Error Estimation and Index Refinement for

Dimension-Adaptive Sparse Grid Quadrature
with Applications to the Computation
of Path Integrals

Torsten Nahm

Diploma Thesis
University of Bonn

March 2005






Contents

Contents
1 Introduction 5
1.1 Multi-Dimensional Integrals of Real Functions . . . . . . . ... ... )
1.2 The Curse of Dimensionality . . . . . .. ... ... ... ... .... 5
1.3 Contributions . . . . . . ... 6
1.4 Outline of the Thesis . . . . . . .. ... .. .. ... ... 7
1.5 Acknowledgements . . . . ... .. ..o 7
2 Multi-Dimensional Quadrature Methods 9
2.1 A Sketch of History . . . . . . . ... . ... .. ... 9
2.2 Definitions and notations . . . . .. .. ..o 10
2.3 Sampling Methods . . . . . . . ... ... 12
2.3.1 Monte Carlo quadrature . . . . . .. ... .. ... ...... 12
2.3.2 Quasi-Monte Carlo quadrature . . . . .. ... ... .. ... 14
2.4 Interpolation Methods . . . . . . . . ... .. ... ..o 15
2.4.1 General interpolation . . . . . .. ..o oL 15
2.4.2  One-dimensional quadratureon R . . . . ... ... .. ... 17
2.4.3  Convergence results for Q = [0,1], u = A ([0,1]) and C* ([0,1]) 19
2.4.4 The tensor product . . . . . . .. ... 20
2.4.5 Multi-Dimensional quadrature . . . . . . . ... ... ... .. 21
2.4.6 Convergence results for Q = [0,1]¢ and = A% ([0,1]¢) . ... 23
2.5 Nested quadrature . . . . . . . . ... 23
2.6 Comparisons . . . . . . ... 25
2.7 On the questionable significance of asymptotic behavior . . . . . .. 26
3 Hierarchies and the Method of Sparse Grids 29
3.1 Definitions and notations . . . . .. .. .. ..o 29
3.2 The method of sparse grids . . . .. .. .. ... .. .. ....... 30
3.3 Estimates for Ay (f) for @ =[0,1]% and p= A4 ([0,1]%) . . . ... .. 32
3.4 General error bounds . . . . . ... 34
4 Index Refinement and Error Estimates 41
4.1 Introduction . . . . . . . ... 41
4.2 Index refinement . . . . ... .. Lo 41
4.2.1 Estimation using the direct predecessors . . . . . . .. .. .. 41
4.2.2 Estimation by evaluation . . .. .. .. ... ... .. .... 42
4.2.3 Trivial estimation . . . . . . . .. ... 43
4.3 Error estimates . . . . . .. ..o 43
4.3.1 Estimates using the index structure. . . . . . . . . .. .. .. 43
4.3.2 Black box estimates . . . . ... ... 0000 46
4.4 Hybrid algorithms . . . . . .. . ... o 48



Contents

6.7 Conclusion

5 The Implementation
5.1 Introduction . . . . . . . . ...
5.2 The core algorithm . . . . . . . .. ... Lo
5.3 The quadrature formulas . . . . . . ... ... .. 0 oo
54 Theapplet. . . . . .
5.5 Visualization . . . ... ...
5.5.1 The Grid window . . . . . . .. . .. ... .. ... ......
5.5.2 The Extent window . . . . .. . ... ... ... ... ... .
5.5.3 The Result window . . . . . .. . ... ... ... .......
5.5.4 The Contribution window . . . . . . . ... ... ... ....
5.6 Data structures and complexity . . . . . .. ... o0
5.6.1 Multi-indices . . . . . . ... L
5.6.2 Theindexset . . . . . .. ... ...
5.6.3 Queues . . ...
5.6.4 The complete algorithm . . . ... ... ... ... .. ... ..
6 The Genz Test Suite
6.1 Introduction . . . . . . . . .. ..
6.2 The Genz test functions . . . . . . . . . ... ... L.
6.3 Finding good parameters for the algorithm . . . . . ... . ... ...
6.3.1 The choice of index refinement strategy . . . .. . ... ...
6.3.2 The choice of quadrature rules . . . . . .. ... .. .. ...
6.3.3 The choice of the simplicial ratio . . . . . ... ... .. ...
6.4 Comparisons with the standard methods . . . . . . ... .. ... ..
6.4.1 d=8 . . ..
6.42 d=4 . ..
6.43 d=16. . . . . . .
6.5 Dimension-adaptive vs. simplicial methods . . . . . . .. . ... ...
6.6 FError estimates . . . . .. ... ..

7 Path integrals for quantum mechanics
7.1 Introduction . . . . . . . . ...
7.2 The discretized measure . . . . . ... ...
7.3 The harmonic oscillator . . . . . . . . .. .. ... .
7.4 The anharmonic oscillator . . . . . . . . . . .. ... ... ... ...

7.5 Conclusion

8 Conclusion

51
51
51
o4
95
95
56
56
o6
o8
o8
o8
59
99
59

63
63
63
66
66
68
68
70
70
73
73
5
7
79

81
81
82
83
86
88

89



1 Introduction

1.1 Multi-Dimensional Integrals of Real Functions

Integrals are a fundamental part of mathematics, with applications in a wide range
of sciences. Among others, they feature prominently in physics, statistics, physical
chemistry and financial mathematics. The most important case are integrals for
functions with a domain that lies within R? for some dimension d, and with values
in R. We shall cover only these functions in this thesis, but we note that the extension
to C-valued functions requires only slight modifications.

Path integrals are a particularly notable source of high-dimensional integration
problems. They play an important role in financial mathematics and in statistical
mechanics. Path integrals also arise as an alternative and complementary representa-
tion of certain partial differential equations. In particular, these path integrals allow
for a simple representation of the Green function for the time evolution operator. We
examine this relationship for the Schroedinger equation in quantum mechanics. Path
integrals are infinite-dimensional by nature, and to approximate them numerically,
we need to perform a temporal discretization. Since the error from discretization de-
creases with the number of time steps, we need high-dimensional integrals to obtain
accurate results.

1.2 The Curse of Dimensionality

The following observation is of particular relevance to this thesis. If we want to
integrate a function f in the interval [0, 1], we might go ahead by taking its value at
equidistant points, and calculating the mean of the function values on these points.
This means evaluating f at N points. If we naively try to scale up this method to
d dimensions, and similarly subdivide [0, 1]d equidistantly into d-dimensional hyper-
cubes, we find we need to evaluate f at N points. That is, the amount of work
needed to attain a given refinement level % and a corresponding level of accuracy
increases with the exponent d, and quickly grows beyond the capacity of today’s
computers for high dimensions d.

The “curse of dimensionality” is the colorful moniker used to describe this help-
lessness in the face of high dimensions. If we want to perform quadrature for high-
dimensional functions, we need to find some way to avoid the curse of dimensionality.

The sampling methods Monte Carlo and Quasi Monte-Carlo accomplish this feat.
The convergence of Monte Carlo quadrature is fully independent from the dimension
of the problem, avoiding the curse of dimensionality. In many cases, Quasi Monte-
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Carlo quadrature is a good alternative to Monte Carlo. Although unlike Monte Carlo
it does suffer to some extent from the curse of dimensionality, it has a better con-
vergence rate, which may outweigh this deficit in practice. However, the respective
convergence rates of % for Monte Carlo and at most 1 for Quasi-Monte Carlo make
them ill-suited for problems that require high numerical accuracy.

Classical interpolation quadrature exploits the higher degrees of smoothness offered
by many functions of interest and is able to attain much higher convergence rates. If
it is scaled up to higher dimension using a tensor product approach, it does however
suffer fully from the curse of dimensionality. The sparse grid method offers a way of
retaining the advantages of interpolation quadrature while mitigating the effects of
the curse of dimensionality. In recent years, adaptive sparse grid methods [17, 16]
have been proposed in an effort to fully exploit the possibilities of the sparse grid
method. Questions remain as to what strategies for adaptivity should be chosen.
Also, the estimation of the error of quadrature is difficult for these methods, and
requires further investigation.

1.3 Contributions

This thesis represents an application of the method of dimension-adaptive sparse
grids [17] to the problem of quadrature. In particular, it extends the work on a
corresponding algorithm proposed in [16]. The major contributions of the thesis are
as follows.

o We suggest several different strategies for dimension-adaptive refinement based
on a theoretical analysis of optimal convergence.

e We propose a hybrid strategy that combines the advantages of both conven-
tional non-adaptive sparse grid quadrature [15] and of adaptive sparse grid
quadrature, and obtain theoretical results for its convergence.

e We examine the problem of estimating the error of quadrature. We give theo-
retical results for the method proposed in [16], and suggest a new alternative
method.

e The different strategies proposed in this thesis are implemented on the com-
puter. The implementation is realized in an object-oriented, modular fashion
that supports a mix-and-match approach for the various strategies. The imple-
mentation also includes several tools for visualizing the process of integration
online. We analyze the run time complexity of the algorithm.

e Using the computer implementation and the Genz test suite, we compare the
performance of the different refinement strategies, error estimators and quadra-
ture rules with each other, and identify a set of parameters that performs well
overall for the examined test cases.



1.4 Outline of the Thesis

e We compare the performance of the algorithm with established methods for
multi-dimensional quadrature for the Genz test suite.

e We consider the problem of path integrals for two examples from quantum
mechanics. We examine how the dimension-adaptive algorithm may be applied
in this case, and compare its performance to that of the established methods.

Numerical mathematics is a field that some may describe as lacking mathematical
stringency. This thesis makes an effort to present all results in a precise fashion,
and to use modern mathematical structure to give concise proofs. We have also
avoided the terms “trivial”, “of course” and the big-O notation in proofs throughout
this thesis, as we feel they may cover up problems [10].

1.4 Outline of the Thesis

The thesis starts off in chapter 2 with a review of several established approaches for
multi-dimensional quadrature. The sampling methods Monte Carlo and Quasi-Monte
Carlo are compared to the interpolation methods. We place particular emphasis on
the performance of the different methods for high-dimensional problems. Chapter 3
reviews the sparse grid method for numerical quadrature, and examines its adaptive
and non-adaptive versions. We also give some theoretical results for the convergence
of the non-adaptive version, and show in particular that asymptotically, non-adaptive
sparse grid methods fully break the curse of dimensionality. For actual computation,
adaptive sparse grids may perform far better than non-adaptive methods. Their
success depends on the quality of the adaptation strategy. In chapter 4, we consider
the problem of adaptive refinement, and the related problem of error estimation.
The computer implementation of the proposed algorithms, requisite data structures
and questions of run time complexity are considered in chapter 5.

In chapter 6, we compare the different strategies proposed in earlier chapters with
each other using the Genz test suite. Of the strategies and parameters compared,
we identify the combination with the best overall characteristics. We then compare
this algorithm with the established quadrature methods reviewed in chapter 2. In
chapter 7, we examine the path integral representation of the harmonic oscillator and
the anharmonic oscillator as examples of quantum mechanical problems. As in the
previous chapter, we compare the performance of the adaptive sparse grid algorithm
with the other quadrature methods. The thesis closes in chapter 8 with a discussion
of the results obtained and of the questions and problems that remain.

1.5 Acknowledgements

I'would like to thank Prof. Michael Griebel for sponsoring this thesis and Dr. Thomas
Gerstner for his many helpful suggestions in developing the algorithm and in prepar-
ing this document. [ would also like to thank Jorg Zimmermann for the many
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insightful discussions on mathematics in general that sustained me throughout the
work on this thesis.



2 Multi-Dimensional Quadrature
Methods

This chapter gives an overview on the major established methods for the quadrature
of multi-dimensional functions. Most of the results are standard material and may
be found in any textbook on quadrature, although for reasons of consistency we
have given in them in the form of trivial generalizations to arbitrary measures. We
have paid special attention to show not only the capacities but also the limits of the
different methods, in asymptotic theory as well as in pre-asymptotic practice. At
the end of the chapter, we give a systematic comparison between the methods.

2.1 A Sketch of History

The modern theoretical foundation of integration theory dates back to Riemann in
the 19th and Lebesgue in the early 20th century, and allows for the integration of
large classes of functions. The integral values of functions of interest can often not be
obtained analytically, i.e. by evaluating elementary functions. Instead, the integral
values are approximated by numerical means (a process called numerical quadrature,
or simply quadrature!).

The concept and first methods for numerical quadrature date back to the ancient
Greeks. These approaches were geometrical in nature and are today described as the
method of exhaustion (a prime example is Archimedes’ approximation of x[1]). The
method of exhaustion works by approximating a complex 2- or 3-dimensional shape
by polygons and polyhedrons, respectively, which have a known area or volume.
During the late 17th century, the development of calculus by Leibniz and Newton
allowed for a wholly new approach to integrals. Their realization that differentiation
theory also allowed for the solution of integrals by reversing the process of derivation
opened the new field of analytical integration. It allowed for the symbolic integration
of many simple functions by finding their “anti-derivative”.

This discovery quickly fed into approximative integration theory, and by the end

!Several authors use the term “cubature” for multi-dimensional numerical integration, and reserves
the term “quadrature” for univariate integrals. However, this hardly improves terminology, since
the “cubature” as opposed to “quadrature” would at best suggest integrating over a 2-dimensional
domain to obtain a 3-dimensional (cubic) volume. Furthermore, in the context of measure
theory, integration is indeed a 2-dimensional process analogous to quadrature, since the value
of the integral is obtained by multiplying the value of the function with the measure of the set
(which may not even have a dimension) on which it has this value, thus (by abuse of abstraction)
yielding a (2-dimensional) area. For these reasons, the term “quadrature” is used throughout
the manuscript to describe the numerical approximation of integrals.
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of the 17th century calculus had been used to generalize the Greek approach from
geometric objects to general functions. For this, a given integrand is approximated
by functions whose integrals are well known analytically (usually polynomials). This
is known as quadrature by interpolation.

It was not until the 20th century that a wholly new class of quadrature methods,
the sampling methods, was developed. Of these, Monte Carlo integration is the
most prominent. Sampling methods are based on picking random or at least highly
dispersive series of points, and taking the arithmetic mean of the function values
obtained at these points as result for the quadrature. Their properties are quite
different from interpolation methods, as we shall see later.

In recent decades, interest in numerical quadrature has surged, due mainly to the
ubiquity of powerful computers that for the first time allow the computation of many
quadrature values to high precision. Indeed, the problem of the quadrature of one-
dimensional functions may be regarded as solved for the majority of functions of
interest. For functions of higher dimensions, numerical quadrature still poses a huge
challenge, and is an active area of current research. The reason that quadrature for
higher dimensions is so difficult is outlined in the next section.

2.2 Definitions and notations

We will use the following notation:

Q denotes the domain of integration; often, we have Q C R? for some d

7 denotes the measure on {2 over which the function is to be integrated;
often, p will be the d-dimensional Lebesgue-measure \?

Il 4| denotes the weight of the measure, i.e. |u| := u(£2)

f denotes the integrand, with f € £(p)

I(f) denotes the integral of f over the measure p, that is I(f) := [, fdu
Qn(f) denotes the result of numerical quadrature for the function f after eval-

uating f at N function points

e(N) denotes the error of quadrature after evaluating N function points; it is
defined as e(N) = |@n(f) = 1(/f)]

€maz(IN)  denotes an upper bound for the error ¢(IN), as obtained from theoretical

results

p(N) denotes the convergence rate obtained from theory, defined as p(INV) :=
d

—%. This corresponds to the slope of €4, (N) in a bilogarith-

mic plot. The minus sign in the definition make p(IV) satisfy the intuition
that higher convergence rates are better. If A}im p(NN) exists, we call it
— 00

the asymptotic (logarithmic) convergence rate.

10



2.2 Definitions and notations

We will now formalize what we mean by a quadrature method (quadrature algo-
rithm) for a given domain  and a measure p. We will only consider the case of
finite measures, i.e. we require ||u|| < co. We also require ||| > 0. This is needed
for some technical considerations, and the case ||| = 0 is uninteresting anyhow.

Definition 2.2.1 We say that Qn is a deterministic quadrature method iff
there exist functions

pvg:RFT = Qfork,NeN, k<N

and
ry :RY S Rfor NeN
so that
Qn(f)=r~(flzN),-.-, f(zNN))
with

Nk = PNk (fEng), - f(@ng-1))
DN,k 48 said to be the point generator, and ry the result generator.
This definition formalizes the idea that for any given N only information gleaned
from the function so far may be used to calculate the result and to decide which

point to evaluate next (compare [34]). An example for this definition will be given
in the next section.

Definition 2.2.2 We say that Qpn is a probabilistic quadrature method iff there
exist functions pn i and ry as above, but these functions and Q N itself are understood
to have an additional argument from a probability space (S,S, P). That is, we have
QN :Sx LYY =R, png: S x REF1 5 Q, ry: S x RY = R. As is convention in
probability theory, this argument is usually not explicitly listed.

The two properties given in the next definition will often be of use.

Definition 2.2.3 Qy is called positive semi-definite iff we have Qn(f) > 0 for
all f > 0. Qn is called linear iff Qn is linear for all N (and for a probabilis-
tic quadrature method for all probabilistic arguments s € S), i.e. Qn(Af + pg) =

AQN(f) + u@Qn(g) for all integrands f and g and all A\, € R.
Finally, we give several definitions relating quadrature to the integral.

Definition 2.2.4 A quadrature method Qp is called consistent iff for all constant
functions ¢ - 1q, ¢ € R the equality

Qn(c-1a) =I(c-1a) = c|ul

holds. Iff for a set ® C L'(u1) and a specific N we have

11



2 Multi-Dimensional Quadrature Methods

for all g € &, we say that Qn is exact for &. Finally, iff for a set & C LY(u) we
have

lim Qn(g) = I(g)

N—oo

for all g € & we say that QN is limes-exact for &.

We see that the consistency of QQn is simply a special case of exactness for & =
{c-1q : c € R}. We will now examine the properties of the most common methods

for multi-dimensional quadrature.

2.3 Sampling Methods

2.3.1 Monte Carlo quadrature

Not all quadrature algorithms suffer from the curse of dimensionality encountered
by the primitive approach given in section 1.2. Monte Carlo quadrature especially is
totally oblivious to dimension, and in fact any continuous structure at all. Monte-
Carlo quadrature is a probabilistic quadrature method defined by

N
M) =l 3 7(X0) (231)
=1

where the X; are independent random variables with the distribution m
Formalized according to definition 2.2.2, Q%[C is given by the point generator py j, :
(s, (¥i)i=1,..n—1) — Sn and the result generator ry, : (s, (¥i)i=1,..n) — % S i

®N
The probability space (5,S, P) is given by <QN,A®N, (II_ZH> ), where A denotes

the o-algebra on which p is defined. As can be seen from definition, Monte Carlo
quadrature is consistent, positive semi-definite and linear.

Since the random variables Y; = f (X;) are independent and have identical dis-
tribution, by Etemadi’s theorem[11] we have A}gnoo QNMC(f) = E(|lull - f) = I(f)

almost surely in P, that is, for any function f € £'(u) we know that QM is
limes-exact with probability 1. However, Etemadi’s theorem does not give us any
information about the rate of convergence.

To make a statement about the rate of convergence we need the additional condi-
tion that f € £2(u). An elementary result from probability theory is the following:

Proposition 2.3.1 Let f € £3(u). For alln > 0, we have P {e(N) > Jee(n)} <
with ¢ (n) = %\/ el 1 F N -

PROOF. Let f = ||u|| - f. Take > 0. Using Chebyshev’s inequality for the
exponent 2, we have

PllQ¥ew - 101> et} <2 B (@0 - 10)))

12



2.3 Sampling Methods

By definition of f and QMC, it follows that

E(( NCW) —1(h) ) = ( i::f ()) (2.3.2)

Because F <% SN f(X)-E <f)) = 0, we obtain

1 & ’ 1L .
A\ s @) ) - v(s5im-#0)
N 1
- v (pien)
=1
using the equality of Bienaymé for the last step. Finally,
al 1 - 1 -
Sv (i) = vov (o)
i=1
< —E <f (X1) )
= [l £
= NIIMII 1172

In conclusion, we have £ (( MC(f) - I(f))2> < & ||l || £||%2. This combined with
equation 2.3.2 yields the desired result. O

The proposition states that for any number 7 the error ¢(N) is smaller than —=c(7)

N
with probability 1 — #, giving us a convergence rate of % in a statistical sen\sg For
example taking 1 = 155, we know that (V) < ﬁ - 100/ ][]l || f1l p2 with 99% prob-
ability. We see further see from the proposition that ¢ (n) and therefore the constant
of convergence only depends on the £2 norm of f. This means that Monte Carlo
quadrature performs equally well whether the function is smooth, only continuous,
or in fact only measurable.

Due to the probabilistic nature of Monte Carlo quadrature, it is impossible to give

a deterministic guarantee of convergence even for very good-natured functions.

Proposition 2.3.2 Let Q = [0,1], 4 = A ([0,1]). Then there exists f € C>®(£2) so
that for all N, P{|QN'C(f) — I(f)| = 1} > 0.

PROOF. Take f (z) = 10z. Wehave I(f) = 5. Let Ay = {X; < é;z’ =1,...,N}.

We have

1 N

N = 2 F (X <10

13



2 Multi-Dimensional Quadrature Methods

on Ay, so that
{lQNC(H) —1(H] =1} > A

Since P (An) = Z%N > 0, this proves the proposition. O

On the other hand, also due to its probabilistic structure, Monte Carlo quadrature
has the unique property mentioned above that we have almost sure convergence
for N — oco. All deterministic quadrature methods need stronger requirements to
guarantee convergence. This is formulated in the following proposition.

Proposition 2.3.3 If Qn is a deterministic quadrature method for Q = [0,1] and
p = A([0,1]). Then there exists a function f € LY(u) so that Qn(f) does not

converge to [ fdp.

PrOOF. Take g = 0 constant. Let My be the set of points used for the evaluation
of Qn(g). Let M = J;2; M. Since the My are finite it follows immediately that
M is countable. Now let h = 1g\s be the indicator function for Q\M. Since M is
countable, it is also Lebesgue-measurable and therefore h is a measurable function on
Q. Since @ is deterministic, and therefore depends only on the results of function
evaluations, we have Qn(g) = Qn(h) for all N, since g and h are equal on all possible
points of evaluation M. Since I(g) = 0 and I(h) = 1, at least one of the statements

lim Qn(g9) = I(g) and lim Q(h) = I(h) must be false. O
N—oo N—oo

2.3.2 Quasi-Monte Carlo quadrature

Quasi-Monte Carlo quadrature presents a better alternative to Monte Carlo quadra-
ture for many functions. Instead of choosing random points, the points are generated
deterministically. We have

N
Mc [
2 ) =% Z (2.3.3)

where the x; are a deterministic sequence in 2. Quasi-Monte Carlo quadrature is,
just as Monte Carlo quadrature, consistent, positive semi-definite and linear.

For © = [0,1]% and x = A(Q), the convergence rate for the Quasi-Monte Carlo
method is given by the inequality of Koksma-Hlawka[18|:

e(N) <V(f)Dy(x1,...,zN)

where V(f)is the bounded variation of f in the sense of Hardy and Krause[28], and
Dy (z1,...,zN) is the star discrepancy of the family (z1,...,zx) (also [28]).

Commonly, so-called low-discrepancy sequences are used for Quasi-Monte Carlo
quadrature. These sequences are defined by having a star discrepancy

log N )¢
D}kv(xl,...,xN)gC(d)%

14



2.4 Interpolation Methods

for some constants C' (d). The Halton sequence and the Sobol sequence are examples
of such sequences. For their construction, see [30].

For such a low discrepancy sequence and an integrand with bounded variation
in the sense of Hardy and Krause, we therefore obtain an error bound of ¢(N) <
V(f)C (d) M. Calculating the convergence rate according to the definition in
section 2.2, we obtain p@MC(N) =1 — logN. The asymptotic convergence rate is
limy e pP¥MC(N) = 1.

2.4 Interpolation Methods

2.4.1 General interpolation

We now turn to a wholly different class of quadrature methods, the interpolation
methods. Although (as noted in section 2.1) historically older, these methods are
more involved and harder to implement than the Quasi-Monte Carlo and Monte
Carlo sampling methods. The general idea is to find a quadrature method @ that
is limes-exact for a certain class of functions & C L£(Q) (often the polynomials),
which is in some way dense within the set of functions of interest. To formalize this
idea, the definition of a distance between a function and such a class is helpful.

Definition 2.4.1 Let & C L1(Q) be a set of functions. We define the distance of
f to ® by dist (f,8) := inf |[f — gl
g€

Note that the distance may be infinite. We now give a small lemma.

Lemma 2.4.2 Let Qn be linear and positive semi-definite. Then Qn 1is monotonous,
i.e. if f <g then Qn(f) < Qn(9). If additionally QN is consistent, then in partic-
ular [Qn ()] < [[pll - /1o

PRrROOF. We have Qn(g— f) > 0 because Q y is positive semi-definite. By linear-
ity Qn(g) > Qn(f) follows immediately. If Qy is consistent, we have Qn(1q) = ||u|-
Because — || fll - 1o < f < |[fll - 1o , it follows that —[|ul| - [|f[l < @n(f) <
el NS Nl - 0

In particular, this leads to the following estimate.

Lemma 2.4.3 For h € L1(Q), we have
[Qn(h) = I(R)] < 2|lpll - 1M
Proor. We have
[Qn(h) = I(h)] < |Qn(h)] + [L(h)]

By lemma 2.4.2
[Qn(R)] < llpll - (7]l

15



2 Multi-Dimensional Quadrature Methods

and
(R < [l - 7] o

by similar properties of the integral. ]

These results allow us to immediately relate the distance of f to & to the error of
quadrature (see [4]):

Proposition 2.4.4 Let Qy be linear, consistent and positive semi-definite. Let Qn
be exact on &. Then
€(N) < 2{|ull - dist(f, 8)

PRrROOF. For all g € &, we have Qn(g) — I(g) = 0 by definition. Because Qy is
linear, this implies

e(N) = 1Qn(f) = I(f)]

= |Qn(f) —I(f) +Qn(g) — I(9)]
QN (f—9) = I(f —9)l
< 2pll-1f -9l

by the above lemma. Since this is true for any g € &, we have
N) <2 ~inf ||f —
«(N) <2l - nf 1S ~ gl
O
We can extend this result to quadrature methods that are only limes-exact on &.

Proposition 2.4.5 Let Qn be linear, consistent and positive semi-definite. Let Q
be limes-exact on &. Then

limsup €(N) < 2 ||p] - dist(f, &)

N—oo

PROOF. Let € > 0. Let g € . Then

Qn(f) = 1(f)l = [Qn(f) —Qn(g) — I(f)+1(g9) + @n(g) — I(9)]

< QN (f=9)—1(f —9)+1@n(9) — I(9)]

< 2|l 1If = 9lloe +1QN(9) = 1(9)]
Since

Jim [@n(g) = I(g)| =0
this means
lim sup Qn(f) = I(H)l < 2[lpll - If — 9l

Since g € & was arbitrary, this proves the proposition. O

16



2.4 Interpolation Methods

Our main result on quadrature by interpolation follows as corollary.

Corollary 2.4.6 Let Qu be linear, consistent and positive semi-definite. Let Qn be
limes-exact for &. Then Qn is limes-exact on &, where & denotes the closure of ®
with respect to the topology of uniform convergence.

PROOF. We simply note that for f € & we have dist(f, ®) = 0 by definition. [

2.4.2 One-dimensional quadrature on R

In this section, we examine the important case 2 C R. In this case, because they
are especially amenable to analytical integration, is usually taken to be the set of
polynomials. We denote the polynomials? of order m or less by P,,, that is,

Pr := spang {1,x,x2, . ,xm}

and the set of all polynomials simply by P. For the following considerations, we
require that P C L£(u). This is the case for instance if Q is bounded. From this
follows that P C L£2(u), since the squares of polynomials are themselves polynomials.
This allows us to define the standard £2(u) bilinear form (f, g) := Jo f - gdp.

We now proceed to find quadrature formulas that are limes-exact on the polyno-
mials. We will examine formulas of the type

N
Qn(f) =D wnif(zn,) (2.4.1)
i=1

with wy; € R and zxn; € €. Obviously, @y is linear. We note that Q) is consistent
iff

N
Swvi = ul (24.2)
=1

and that the condition

wy; >0 (2.4.3)

for all N and ¢ = 1,..., N is sufficient (but not always necessary) for @y to be
positive semi-definite.

It is an elementary result that for any given set of abscissas xn 1, ..., zN, N, weights
WN,1,- -+, WN,N (called Newton-Cotes weights) can be chosen so that Qu is exact
on Pxy_1. These may be obtained for example by integrating the Lagrange basis
polynomials [9].

Remark 2.4.7 Any quadrature formula Qn that is exact on Py is automatically con-
sistent because Py = {c-1q : ¢ € R} (compare definition 2.2.4). It is not, however,

By abuse of notation, we do not distinguish the polynomials per se as elements of R®" from their
incarnation as elements of map (2, R).
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2 Multi-Dimensional Quadrature Methods

necessarily positive semi-definite, so if we need this property, we have to establish it
for the given measure and nodes.

For the Newton-Cotes weights, the abscissas x; could be chosen arbitrarily (as long
as no two are the same). This gives us a quadrature formula that is exact on Py_1.
For so-called Gauss formulas, special points (the nodes of orthogonal polynomials)
are chosen as the abscissas, leading to formulas that are exact Poy_1 [9]. Gauss
formulas do not always exist. However, it can be shown that if the bilinear (.,.) form
is positive definite on P and if € is an interval, then for each N we have a positive
semi-definite Gauss formula Q.

Remark 2.4.8 Gauss formulas exist and are well-known for many important cases:

Q=[-1,1, pu=A([-1,1)) Gauss-Legendre rules
Q=[-1,1], p= \/11_7)\1 ([-1,1]) Gauss-Chebyshev rules
Q =10,00[, u=-e*A([0,00]) Gauss-Laguerre rules

Q=] —o0,00][, = ﬁe‘ﬁ)\l (] —o0,00[) Gauss-Hermite rules

All these formulas are linear, consistent and positive semi-definite.

If we have a quadrature method @y that is exact for increasing polynomial degrees
with N, this in particular implies that @)y is limes-exact for P. This gives us an

important result on convergence.

Proposition 2.4.9 Let Qn be linear, consistent and positive semi-definite. If Qn s
limes-exact for P and Q is compact, then Qy is limes-ezact for C°(Q), where C°(£2)
denotes the continuous functions on €.

PRrROOF. This follows immediately form the theorem of Stone-Weierstrass[13] and
from proposition 2.4.6. O

This result answers the question of convergence only for compact 2. However, many
functions of interest are not defined on a compact domain, for example because
they have a singularity. Empirically, we observe that the method of quadrature
by polynomial interpolation given in this chapter still works quite well in many
cases. Unfortunately, the theory of convergence for quadrature on non-compact
domains is far less developed than that for compact domains and closed intervals
in particular, so that we have only a few results for small and poorly characterized
functions spaces. For Gauss-Hermite quadrature, for example, we obtain convergence
if all derivatives have a common bound (compare [9]). Given the good convergence
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2.4 Interpolation Methods

attained on non-compact domains in practice, this gulf between practice and theory
is quite unsatisfactory.

2.4.3 Convergence results for Q = [0,1], = A ([0,1]) and C* ([0, 1])

We now give results for a case for which detailed analysis does exist, and which
nonetheless encompasses many important problems. Specifically, we take Q = [0, 1]
and pu = A ([0,1]), and an integrand f € C° ([0,1]). For this section, we assume
that Qn is exact on Py_1 (quadrature methods of this kind are sometimes called
interpolatory).

For the base point g = %, the Taylor interpolation polynomial is

p(x) = f ak‘);!(%) (w —~ %)k

This means that we have

f(z)=p(z)+

M (7) < 1>M“
T3

M+1) " 2

for some 7 € [0,1]. Because p € Py, this implies

) 1
dist (f,Pum) < ||f = pllo < VS ‘3M+1fHOO (2.4.4)

P D) |

Since @ is exact on Py_1, we can now use proposition 2.4.4 to obtain the estimate

e(N) <

< o ¥

Unfortunately, this generally allows no prediction about how fast ¢(N') converges to 0
with increasing N, because HBNfHOO can increase rapidly with N. Indeed, if f is not
analytical in [0, 1], we know the remainder term of the Taylor series does not converge
to 0. To give estimates of convergence for general functions f € C*° ([0, 1]), we need
a different approach. Here the theory of approximation with algebraic polynomials
comes into play [4]. Indeed, from approximation theory we have the estimate

s

dlSt(f PM)_ 27’+1(M—7’+2)(M+1)

10" fllo

for a fixed r > 1 and M > r — 1 for any f € C"([0,1]) [32]. Since

M+1)
lim (M +1)

M—oo (M —r+2)---(M+1) =1

this means we have constants ¢, < oo with

dist (f,Par) < 5 (M + 1) 771107
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2 Multi-Dimensional Quadrature Methods

Now we can again use proposition 2.4.4 to obtain
e(N) < 2||pll - dist (f,Pn-1) < &N [|0" f|

for M >r — 1.

This gives us a convergence rate of p(N) = r for N > r. For our function f €
C> ([0,1]), this means that we actually have an asymptotic convergence rate of
infinity. While this sounds rather tantalizing, we must always remember that the
calculations our computers are able to perform stop far short of infinity (we will
return to this point in section 2.7). For finite IV, we have the estimate

e(N) < min M [|0" fll
r=1,...N
Each one of the terms ¢, M ™" ||0" f||, will eventually overtake all previous terms
csM ™% ]|0° f|, s < r and become the dominant term for the minimum. When this
transition happens depends on the size of ¢, [|0" f| .. In practice therefore we do
expect the observed convergence rate to actually speed up with increasing N, but
how slowly or quickly this speed-up occurs is strongly dependent on the function f
and its derivatives.

Remark 2.4.10 The constants given in the estimates for dist (f, Par) above can be
drastically improved with additional results (for example [3]). However, the qualita-
tive nature of the results remains the same.

Remark 2.4.11 We have examined only functions of the class C* ([0,1]). As we
can see from the results above, we in fact have e(N) < ¢, M~ ||0" f||, for any f €
cr ([0, 1]).

2.4.4 The tensor product

We now need to find a way to translate our one-dimensional interpolation quadrature
formulas to the multi-dimensional case. The natural approach is to use some sort of
tensor product of our one-dimensional operators. The history of the tensor product
is complex, and it has been notoriously difficult to formalize. The formalization
found in the context of algebra and category theory[20, 24] is mathematically exact,
but is usually insufficient for analytical questions. This is due to the fact that for
the algebraic tensor product, all tensors are finite sums of decomposable elements
a ® b. However, to give an example, in general a continuous function f € C ((22)
cannot be written as a sum f(z,y) = > gi(x)h; (y) with g;,h; € C(Q). To
overcome this limitation, some sort of completion process has to be performed, with
careful thought to the proper norm for completion. For operators (like the Qy), the
situation becomes even more difficult, since we need to find conditions to make sure
the operators can be properly extended onto the completed space. An overview of
the required mathematics is given for example in [23].
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2.4 Interpolation Methods

Since none of these difficult concepts are actually needed for this thesis, we will
sidestep the problem by defining the tensor product only for a very limited space of
operators, which, however, is sufficient for our further considerations. Indeed, when
we use the tensor product during this thesis, we always mean the tensor product of
vector spaces from algebra.

Definition 2.4.12 We define the Dirac form o, for x € Q by 6,(f) = f (x). We
define the space of Dirac sums Dq by Dq := spang {0, : © € Q}.

This class D corresponds exactly to the class of quadrature formulas used in this
section, as given in equation 2.4.1. We now take the d-fold algebraic tensor product
of Dq with itself:

DE%:= Dq®...® Dq

d times

We define a multi-linear mapping
E: (Dq)? — Dga
by defining it on the basis elements of Dq by

E (5331, . ,5zd) = 5(x1,...,md)

By the universal property of the tensor product, this gives us a linear isomorphism
of ng into Dqa, so that we can naturally take Dqa as the tensor product ng.

2.4.5 Multi-Dimensional quadrature

We can now translate the results from section 2.4.2 to the multi-dimensional case by
taking the Dirac formula Q%d, yielding a quadrature formula for z®? on Q4. Written
explicitly by expanding the terms and using the multi-linearity of Q%?, we have

N N
R = Z e Z WN iy WNig f (TNGys -+ TNg)

=1 ig=1

%d is linear, and it inherits the characteristics of Qn: It is consistent if Qy is

consistent, and positive semi-definite if () is positive semi-definite.

Proposition 2.4.13 If Qu is consistent, then Q%d 1§ consistent.

d
PROOF. Q%d (C : 1Qd) = Zﬁ\lle - ZZ=1 WNip * " WN,iyC = C (Zz]\il wN7i> =

d
¢ [l 0

Proposition 2.4.14 If Qn is positive semi-definite, then Q%d 18 positive semi-
definite.
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2 Multi-Dimensional Quadrature Methods

ProOOF. We will first examine the case of d = 2. Let f > 0 and g(z) =
Qn (f (z,.)). Because f (z,.) > 0 for all x and because Qy is positive semi-definite,

we obtain g (z) > 0. Because Qn ® Qn(f) = Qn(g), we obtain Qn @ Qn(f) > 0,
which proves the proposition for d = 2. We can extend this proof to higher dimen-
sions by iteration. O

In analogy to the last section, let Pj‘\l/[ denote the d-dimensional polynomials of at
most maximum degree M, i.e.

d . M M
Pir .—spanR{l,xl,...xd,...,xl U }

and let P4 = |J P4, denote all d-dimensional polynomials.

M
We can now transfer the results about polynomial exactness from the last section
to the multi-dimensional case. First, we prove a more general proposition.

Proposition 2.4.15 If Qn is exact on G, then Q%d is exact on GO,

PRrROOF. Let h(z1,...,24) = g1 (x1) - 94 (zq), g; € G be a decomposable ele-
ment of G. We have

N
Ce E WN i1 " 'wN,idh(fL'N,ila ces 793N7id)
ig=1

Q¥ (h) =

-

@
=
Il

—

N
D WG NG9 (TN - ga (Ti,)
ig=1

I
'MZ

o
=
I

_.

N
N g1 (TN - D WNigga (BN,)
ig=1

I
M) =

.
Il
—

1

= QN(gl)“‘QN(gd):/ﬂgldﬂ"'/ﬂgddﬂ

= /ngl (x1) - ga (za) du® (21, ..., 7q)

— / hdu®d
Qd

Since any element of G®¢ can be written as finite sum of decomposable elements, the
proposition follows from the linearity of Q%d and fQ dp. O

Corollary 2.4.16 If Qn is exact on Py, then Q%d s exact on 73]‘%4.

PrOOF. This follows immediately by noting that P{, = (Par)®%. O

In analogy to the last section, we therefore know that if QQx is exact for increasing
polynomial degrees with larger N, then Q%d is limes-exact on P?%. Therefore, in
analogy to proposition 2.4.9, we know that Q%d is limes-exact on C' (Qd) if O (and
therefore Q%) is compact.
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2.5 Nested quadrature

In this way, we have found a very straightforward approach to scaling up our
quadrature formulas to higher dimensions. The bad news is that this approach suffers
from the curse of dimensionality (see section 1.2). Calculating Q%d(f) requires N¢
function evaluations, making numerical evaluation impossible for larger N in high
dimensions. We will return to this problem and an approach for its mitigation in the
next chapter.

2.4.6 Convergence results for Q =[0,1]* and p = X ([0,1]%)

In analogy to section 2.4.3, we now give estimates for convergence for functions on the
multi-dimensional cube [0,1]% with p = A? ([0,1]?). We take a function f € C4(Q2)
and a quadrature formula @)y that is exact on Py_1. We introduce the norm

o\ o\
(o) () s

It can be shown that ¢(IN) < cd,,ang || |l for some constants ¢, and for N > r<,

”fHC?" = “IE&XT T idril(f]jf.(.r I;leaé(

with the corresponding convergence rate of Z[8]. Important for our considerations

is the fact if we have a one-dimensional convergence rate of s, then the multi-

dimensional convergence rate can, due to the curse of dimensionality, be only as
S

good as 2. Indeed, for a one-dimensional function g € £' (A ([0,1])), we only need

take f € £1 (A% (]0,1]%)) with f(z) = g (21). We then have

Q%Uf) = Qn(9) - Qn (1a)--- Qn (1) = Qn(9)

because @y is exact on 1g. Therefore, we attain exactly the same convergence as we
did in the one-dimensional case, however using N¢ points for calculating Q%d instead
of only N points for @x. In the bilogarithmic plot of ¢(N) over N, the abscissa is
therefore stretched by the factor d, turning a convergence rate of s into only 5. For
this function, we are in effect wasting many evaluations N for the dimensions 2 to d
where nothing is going on.

2.5 Nested quadrature

So far, we have not given consideration to the specific nature of the points where the
function is evaluated. Of special interest is the question whether the points used to
calculate Qn(f) are reused for higher values of N. The definitions 2.2.1 and 2.2.2
allow for both possibilities, because the point generator py; depends explicitly on
N. This means that the points of evaluation may be different for every N. However,
not all quadrature formulas make use of this freedom. For both Monte Carlo and
Quasi-Monte Carlo, the points sequence is independent of V. This is in contrast to
the quadrature formulas of section 2.4.2, where the nodes for the Gaussian formulas
generally change completely with every V. We call formulas of the first kind nested,
because new points are always added to (nested within) the old points.

23



2 Multi-Dimensional Quadrature Methods

This difference is important for open-ended (online) integration, where the value
of N is not predetermined, but is continually increased until some sort of condition
is met. In this case, nested quadrature formulas have the advantage that we only
have one new function evaluation when going from Qy to Qny1, whereas in the
general case we would need to evaluate the function N 4 1 times. For example, we
use open-ended integration if we want to obtain a quadrature value for a given error
threshold. In this case, we increase N until the integration error (as estimated by
some part of our algorithm) falls below the given threshold.

At first glance, it would seem that nested quadrature formulas have a large advan-
tage in this case, because the number of function evaluations for Qq,...,Qn is N.
In the case of a quadrature formula that is not nested, we have instead %N (N +1),
so that the evaluation complexity is of the order NZinstead of N. With a different
strategy, we can however reduce this difference in degree to only a difference in con-
stants. We achieve this by not evaluating Qn for every N, but instead using the
series N; = 2, i = 0,1,... If M is the minimum number of evaluations for which
the condition is fulfilled, we have N; > M for some minimal . For this r, we have
N, < 2M. The total number of evaluations is then

T ™
ZNi = 222‘ <ot —oN, <4M
=0 =0

Thus for a non-nested formula, we need at most 4 times as many evaluations to reach
a given condition. Thus, the difference between nested and non-nested quadrature
boils down to a difference in constants. This especially entails that the convergence
rate for open-ended integration is always the same as for predetermined N, irrespec-
tive of whether Q) is nested or not nested.

Remark 2.5.1 Calculation shows that the same qualitative result is obtained for
N; = ceil (b) for some b > 1, where ceil (z) := min{n € N:n >z} is the smallest
integer at least as large as x, albeit with a different constant. We calculate the
asymptotic constant c (b) using the notation from above

M)
. Zrﬁo Ni
c(b) = limsup ==——
(0) m sup ==
. 1 br(M)-H_l
BT T
. 1b-brM) 1
R A VR
. 1b6-bM —1
= limsup ———
b2
T ob—1

c(b) has a minimum of 4 at b = 2 in the interval |1, 00[, showing that our choice of
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base 2 is optimal.

2.6 Comparisons

In summary, we have the following results from the last section on the quadrature
methods and their convergence.

Quadrature | Function class Error bound Asymptotic
method convergence
rate

Monte Carlo | £1(9) e(N) < %\/m | f1l 22 i (ina
with at least probability statistical
0.99 sense)

Quasi- Function on 0,14 | e(N) < V(f)C (d) 18X° | 1

Monte with bounded

Carlo variation

Polynomial | C” <[0, 1]d) e(N) < e N7"||0"fl|, for |

interpola- N>r

tion

Tensor cr <[0, 1]d) e(N) < cgrN7a|fllor for |-

product N >rd

polynomial

interpola-

tion

We see that the smaller the function class for the quadrature (from top to bottom),
the better the convergence rate is. This is not surprising: The higher the degree of
smoothness, the less erratically the function can behave, and the quadrature methods
can take advantage of this information.

Monte Carlo quadrature can be used for any function in £'(Q), and does not make
use of any differentiable or even continuous structure at all, working just as well for
R as for R19% or indeed any measure, whether it even has a dimension or not. On
the other hand, it is also unable to take advantage of the smoothness offered by many
of the problems of interest, always having the same statistical convergence rate of %
This means that for each further decimal digit of the integral we want to obtain, we
need to evaluate 100 times as many points. For this reason, Monte Carlo quadrature
is unsuitable for results that demand a high precision.

Quasi-Monte Carlo quadrature offers a good alternative to Monte Carlo for inte-
gration on [0, 1]? for all but the most ill-natured functions, but is not able to make
use of the additional information offered by differentiable functions. Also, the pre-
asymptotic guaranteed convergence rate may be far lower than the asymptotic rate
of 1, as we will see in the next section.
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2 Multi-Dimensional Quadrature Methods

High degrees of smoothness are well exploited for 1-dimensional functions by in-
terpolation quadrature. While tensor product interpolation quadrature also makes
use of higher smoothness, it does so to a much lesser extent, having only a conver-
gence rate of 7. Even if, as is commonly the case, our function is of class C'°°(2),
simply taking a very high r for a fixed dimension d to obtain a large convergence
rate 5 is not an option, because this convergence rate only kicks in for N > r¢, again
reflecting the curse of dimensionality.

In the next chapter, we will see that sparse grid methods allow us to avoid the
curse of dimensionality for interpolation quadrature, significantly improving upon

the convergence for multi-dimensional interpolation methods.

2.7 On the questionable significance of asymptotic
behavior

We conclude this chapter by some remarks on the value of asymptotic analysis for
practical computation, using the example of Quasi-Monte Carlo and Monte Carlo
quadrature. As we have seen above, Quasi-Monte Carlo is half an order better
than Monte Carlo asymptotically for functions with bounded variation. However,
this is not true pre-asymptotically. Comparing the pre-asymptotic statistical rate
of p(N) = % for Monte Carlo and the pre-asymptotic rate of p(N) = 1 — ﬁ for
Quasi-Monte Carlo, we see that we need N > €%¢, or about N > 4.8-10% for d = 10,
for Quasi-Monte Carlo to have a better rate than Monte Carlo. For d = 32, we have
N > 6.3 -10%", placing the turnaround point firmly beyond the limits attainable by
today’s computers.

However, even these theoretical pre-asymptotic convergence rates may be quite

misleading in practice, since they give only upper bounds which may be far too

pessimistic. Taking the moderate dimension of d = 10, we have E%EQC(N) =
QMC
c1N~1(log N)1 and eMC (N) = ¢,N~2. For &L =1, we obtain the graph for %

shown in figure 2.7.1 (p. 27). If o <1lor ¢t >1, the graph is shifted up or down,
respectively.

Let us examine how well this theoretical graph relates to practice for the simple
test function f(x1,...,z19) = e~ 2i21% . The plot for the actual error quotient
obtained for this function by numerical quadrature with a computer algorithm for
one run each of Quasi-Monte Carlo and Monte Carlo can be seen in figure 2.7.2, p.
27. The same scale as for figure 2.7.1 was used. This makes for easy comparison
of the two figures. Moreover, the white space to the right, for which computational
results were not obtained due to run-time limitations, drastically illustrates the limits
of numerical computability compared to theoretically required large N's.

When comparing the two figures, we see immediately that they are qualitatively
different. Especially, the actual convergence rate of Quasi-Monte Carlo seems to
be better than that of Monte Carlo directly from the start, instead of worse for
N < 4.8 -10% as suggested by theory. Indeed, the relative advantage seems to be
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2 Multi-Dimensional Quadrature Methods

close to %, which would only be expected asymptotically for very large N.

In summary, these comparisons show that the upper bounds offered by theory may
be all but useless for practical considerations, and need always to be taken with at
least several grains of salt.
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3 Hierarchies and the Method of
Sparse Grids

This chapter forms the conceptual core of this work. We have seen in the last
chapter that we can obtain a multi-dimensional quadrature formula by combining
one-dimensional formulas. While this method leads to correct results, it is also very
inefficient, since it suffers from the curse of dimensionality. In 1963, Smolyak gave a
method to avoid the curse of dimensionality [33]. This method has become known
under several different names, including “sparse grid method”, “Boolean method” and
“discrete blending method”. In all these case, the “blending” that is performed follows
a fixed predetermined scheme. This chapter departs from traditional approaches by
beginning with a generalized sparse grid method, which by nature turns out to be
adaptive[17]. In this setting, the conventional predetermined sparse grid methods
can be seen to arise as a special case. Specifically, we apply this adaptive method of
sparse grids to the problem of quadrature. In this, we extend the dimension-adaptive
sparse grid approach proposed in [16].

We give the standard results for convergence of non-adaptive sparse grid quadra-
ture. We use a new approach for error estimation, which allows for a rather simple
proof. This proof has the advantage that it is not limited to predetermined (simpli-
cial) index sets, but can also be used for adaptive algorithms.

3.1 Definitions and notations

We will use the following notation:

N denotes the natural numbers including 0
a, B, 7, ... denote multi-indices, i.e. elements of N for some dimension d
Q; denotes the i-th component of the multi-index «, where ¢t =1,...,d
o]y denotes the total length of the multi-index «, defined by |a| = 2?21 a;
lor] o denotes the maximum length of the multi-index «a, defined by |a| =
max o
i=1,...,d
e; denotes the multi-index with a 1 at the i-th position and 0 otherwise, i.e.
(e;); = dij
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3 Hierarchies and the Method of Sparse Grids

a<p we declare a partial order on the multi-indices of a given dimension d by
defining that o < Biff a; < G; fori =1,...,d, i.e. we use componentwise
comparison. If & < 3 and a # 3, we say' that a is a predecessor of 3,
and that 3 is a successor of a.

Eval(4)  denotes the number of function evaluations needed to compute A(f) for
a Dirac sum A for any function f; Eval is a measure of computational
complexity

A, for a family of Dirac sums (Ai)ieNo on ) we define the Dirac sum A, on
Ql by A, = Ay, ®...® Ay, (see section 2.4.4 for the definition of Dirac
sums and their tensor product)

3.2 The method of sparse grids

To apply the method of sparse grids to numerical quadrature, we define a refine-
ment hierarchy of Dirac sums (U;),cy with U = Q (), where the strictly increasing
mapping N (1) correlates the level [ of the hierarchy with the number of nodes of
the quadrature formula Qy. Often, N (I) will increase exponentially with [. This
immediately gives us a refinement hierarchy for the d-dimensional case. We need
simply take fo@d)leN.

We define the family (A;) of Dirac sums based on U; by Ag := Uy, A :=U;— U4
for [ > 1. We thus have U; = Zli:(] A;. We now rewrite Ul®d in terms of A;. By
multi-linearity of the tensor product of Dirac sums, we have

UPt = (Zl:AZ) Q... <§A>

1=0
l l
i1=0 id=0
- Y A
o] o <1

with the definition of A, given above. We thus have

UPY) = ) Aulf)

If Ul®d is limes-exact on a set of functions §, we have for f € §

I(f) = lim UP4Y) (3.2.1)

l—o0

While the notation o < 3 would of course be equivalent to o < 8 and a # 3 with the partial order
given, we avoid this notation lest it be confused with the componentwise comparison «a; < G;
for:=1,...,d.
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3.2 The method of sparse grids

= 111)1& Z Aoz(f)

lof o <t

= Z Z Aoz(f)

1=0 |a| =l

We see that approximating I(f) by tensor product formulas of the type Ul®d thus
corresponds to adding the terms A, (f) in order of increasing size of |a/| .

The central insight on which the method of sparse grids is based comes from the
fact this ordering is not necessarily the best for ensuring quick convergence to I(f).
This is due to two complementary considerations:

e The evaluation complexity Eval (A,(f)) is the product of the complexities
of Eval (Ay,;), ¢ = 1,...,d. It thus depends on all the components of «,
not just on the maximum component. To give an example: If d = 10 and
Eval (A;) = 2¢, using |a|  means giving the multi-indices & = (2,0,0,...0) and
8 =1(2,2,...,2) the same precedence for evaluation, even though Eval (A,) =
4, whereas Eval (Ag) = 410 ~ 10°.

e The operator A, represents a mixture of refinements in the different dimen-
sions. Again, it depends on all components of «, not just on the maximum

component.
To maximize the rate of convergence, we use the following general strategy:

Algorithm 3.2.1 Let
1Al
¢ Eval (As(f))

be the ratio of the contribution for o and the number of function evaluations required
to calculate the contribution. Add the contributions Ay (f) in order of decreasing r,.

Note that this strategy involves a reordering of the indices. We will assume for the
moment that this reordering is possible without changing the limit. A sufficient
criterion for this is the absolute convergence of the series, which holds for many
important cases, as we will show later.

This strategy is optimal in reducing the integration error e(N) with respect to N
if all contributions are positive. It may not be optimal for contributions of mixed
signs, as these can cancel each other out to produce a smaller error term. We will
make no attempt to predict the sign of contributions in this thesis, and therefore
take the given algorithm as optimal under these circumstances.

Of course, we generally do not know the values of A, (f) without calculating them.
The algorithm however would require us to know all the values in advance. Instead,
we use heuristics to estimate the contributions from previous calculations, much as
any adaptive algorithm does. We further assume that in general |A,(f)| > |Ag(f)]
for o < 3, since for o < 3 the Dirac sum Ag represents a higher level of refinement
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3 Hierarchies and the Method of Sparse Grids

than A, for all dimensions. Since we generally have Eval (A,) < Eval (Ag) in this
case, we expect that mostly r, > rg for < 3. Since we want to evaluate in order
of decreasing 14, this leads to the stipulation that we do not evaluate Ag(f) unless
we have first evaluated A, (f) for all & < 3. This leads us to the following definition
(compare [15]).

Definition 3.2.2 We call a set of indices A C N¢ valid iff for each indez in A, all
predecessors are also in A, i.e. iff Va e A: V< a: (€ A. We say that an index «
is valid (with respect to A) iff o ¢ A and AU {a} is valid.

We consolidate our considerations in the following algorithm (compare [16]). The
algorithm is the one central to this thesis, and the one on which the computer
implementation is based. The result of quadrature is stored in the variable s.

Algorithm 3.2.3 Start with A := 0, s := 0.
Repeat until a specified condition is reached:
From the set of indices valid with respect to A, pick an index o with the highest
estimate for rq
Set A:= AU {a}
Set s := s+ Ay(f)
End Repeat

Remark 3.2.4 Note that the one-dimensional refinement hierarchy Ay(g) represents
a refinement of the integral for the complete function g : Q@ — R. Accordingly, if
a multi-index o has a component o; = [, this means that the contribution A, (f)
represents a refinement level of | for the whole dimension i. This is in contrast to
the possibility of local refinement, where accuracy is increased selectively for parts
of the domain of integration [2], and which we do not consider in this thesis. To
make the distinction to locally adaptive quadrature clear, the term dimension-adaptive
quadrature is used.

Remark 3.2.5 The construction given in this chapter is not limited to quadrature
formulas. Indeed, we can use sparse grid methods for any kind of multi-dimensional
objects that can be defined as a tensor product of one-dimensional objects, and for
which there exists a one-dimensional hierarchy of refinement. Some examples are
finite elements for partial differential equations or coefficient tensors for lossy data
compression [17, 5].

3.3 Estimates for A,(f) for @ =[0,1]Y and p = X ([0, 1]9)
We take a positive semi-definite linear quadrature formula @y of Dirac sums so that

Qn is exact on Py _1 for each N (for construction of such formulas, see section 2.4.2).
Note that because 1o € Py and @y linear, Qn is already consistent. We use the
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3.3 Estimates for Ao(f) for Q = [0,1]¢ and p = A ([0,1]%)

hierarchy U; = Qn(y with N (I) = 2. For a one-dimensional function g € C* ([0,1])
and p = A ([0,1]), we have

[Ao(g)l = 1Q1(9)] < ll9ll (3.3.1)

and for [ > 1

AN < 1Qu ()] + Q-1 ()] < 2|9l (3.3.2)

Alternatively for [ > 1, we have

IA(O = U (f —p) = U1 (f — )|

for all p € Pj, with k := 2=1 — 1, because U; and U;_; are exact for p. Recalling the
definition of dist (f, ®) from section 2.4.1, this gives us the estimate

A(f)] < piengkﬂUl (f=p)+ U1 (f —p))

inf ([lpll - [If = pll + lull -1 =pl)
PEPk

= 2-dist (f,Px)

IN

In analogy to section 2.4.3, this leads to the estimates
AN < er b+ 170 fllog = 27"V N0 fll
for 211 —1 =k >r — 1. With p=2"", we therefore have
AN < 2 07 flo

for 2! > r. For those [ for which 2/=! < r, we can use equations 3.3.1 and 3.3.2 to
subsume the terms p! under a constant. Taken together, this yields

!
1Ai(9) < a-p'lgllor

f h = ¢ :
or some constant a and the norm ||g|| - [ max I gHOO

We now translate this one-dimensional result for the convergence of A;(g) to the
multi-dimensional case. For this, we need the norm |||, for multi-dimensional

functions, which we already encountered in section 2.4.6.

We now give the main result of this section, following [29]. We use the notation
0; = Bixi to denote the derivate with respect to the i-th component of a function.

Proposition 3.3.1 For f € C* ([0,1]¢), we have |Ay(f)| < apl®h || f]|cr-

PROOF. We first examine the 2-dimensional case. Let f € C* ([0,1]?). Let

g:rx— A (f(2,.)

33



3 Hierarchies and the Method of Sparse Grids
A is a Dirac sum, and can therefore be written as
m
Al = Z aiéyi
i=1
for some a; and y;. We have for any s € Ny:
m m
g (x) = Y aif (wy) =Y adif (x,y:) = A (0] (x,.))
i=1 i=1
From the third term we can see that 9°g exists and is continuous. Furthermore,

ro = A = .
l9llc (Dax max|A (81f (z,.))]

IN

L9
S g e vIag e e

< a-plr;leagsgrg]axrllaff(w, Mer

=U,...

a p' | flles

Combining these two statements yields

Ak ® Al = [Ak(9)l < a-p° llgller < a® - ™| fller

We obtain the proposition by iterating over d. O

3.4 General error bounds

We generalize the results from the last section with the following definition.

Definition 3.4.1 We say that the contributions A, (f) are exponentially conver-
gent to the base p < 1 with the constant ¢ iff |Ay(f)| < ¢ - plohh for all a.

Proposition 3.4.2 Let A, (f) be exponentially convergent. Then the series > Aq(f)
converges absolutely.

PRrROOF. We need to show that > |Ay(f)] < co. We have

o0

STIAUDL = D00 1A

k=0 |a|,=k

S e

k=0 |a|,=k

= ¢ #{a:lal, =k}p
k=0

IN
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3.4 General error bounds

k+d-1
d—1

N k+d-1) 4
%:IAa(f)l Sck:(]( do1 )p

We now apply the ratio test for this series:

Using the fact that # {«: |a|, =k} = ( >, this implies?

k+1+d-1 kil
p
. d—1 _ k+d
lim = lim —— -p =
k—o00 E+d—1 N imoo k+1
-1 |?
Since we have p < 1 by assumption, this proves the proposition. ]

For this section, we assume that Qu(f) converges to I(f). With this assumption,
proposition 3.4.2 allows us to write the error of quadrature as

= Z ‘Aa(f)
ag¢A

where A is the set of indices whose contributions form the result Qn(f). Corre-
spondingly, we have inequality

N < 3 1Aa(h) (3.4.1)

ag¢A

To find an estimate for this series, the following lemma is helpful.

Lemma 3.4.3 Let p <1, € N. Then we have

k§;1<k§§11> l§:<l+d><ﬁg;>ms

Proor. Let F(p) = > 12,1 pFt4=1 I is a power series in p with a 1 as radius
of convergence. Because p < 1 by assumption, we can we can swap summation and
differentiation:

o
adle(p) _ adfl Z kardfl
k=I+1

2Tt is easy to remember the formula for the number of indices of a given length k by imagining that
we have k entries to distribute among our d dimensions (for example o @ ®e for k = 4). We now
insert d— 1 partitions between these entries (for example o|e|ee £ (1,1,2) or eee|je = (3,0, 1) for

E+d—-1 )

k = 4 and d = 3). By basic combinatorics, the number of possibilities is then just ( d—1
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3 Hierarchies and the Method of Sparse Grids

o0
_ Z g1 ph+d-1

k=Il+1
= > (k+td-1)---(k+1)p"
k=l+1
X k+d—1\ 4
= (d—1)!
d-1! Y ( i1 ) p
k=Il+1

On the other hand, we can evaluate F'(p) as a geometric series, obtaining

adle(p) _ adfl Z pk+d71

k=I+1
_ g phtd
1-p
d—1
d—1 s 1
B (e
s=0 s -p
d—1
= (d_1>u+dy~a+d—s+nﬂMS-
s
s=0
1
1---(d—s—1) —————
( ) (1 _ )dfs

_ _1,zz<l+d—1><%>d_s

This leads to the equality

o) d—1 d—s
(d—1)! Z (k:;f;l)pk:(d_l)!pzz<l+i—1><1p%p>

k=I+1

which proves the proposition. ]

We will use this inequality to obtain error bounds for sparse grid quadrature. First,
we review Smolyak’s original concept of predetermined non-adaptive sparse grid
quadrature. In this case, we only allow index sets of the type S' := {a : |a|, <},
where S' denotes the simplex of indices of depth . This corresponds to evaluating
indices in the order of increasing ||, in an online-line algorithm. Looked at in yet
another way, it is equivalent to taking c - ploli as an estimate for r, in algorithm
3.2.3, which establishes the link between non-adaptive sparse grid quadrature and
the concept of exponentially convergent contributions.

Because of the shape of the index set, we will also use the name of simplicial
sparse grid quadrature for these this non-adaptive algorithm, and call indices
ordered by increasing ||, simplicial indices.

We now give estimates for the simplicial method.
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3.4 General error bounds

Proposition 3.4.4 Let A,(f) be exponentially convergent to the base p < 1 with
the constant c and let

QN(f) =D Aalf)

acS!

wzed S () ()

Then we have

s=0 1 -p

PRrROOF. Using equation 3.4.1, we have

e(N) < > 1Al

agA

< D 1AL

agSt

= D > 1AL
k=41 o], =k

o0

> > et
k=141 |a|,=k

> k+d—1
. z( bl )pk

k=Il+1

IN

Using lemma 3.4.3, we obtain the desired result. O

We now give an exceedingly simple corollary, which will nonetheless prove to be very
important for general convergence theory of sparse grid methods, especially with
regard to the hybrid algorithms that we will introduce in section 4.4.

Corollary 3.4.5 Let Ay (f) be exponentially convergent as above. LetA C N? be the

set of multi-indices evaluated for Q. Then if A D S, the estimate in the proposition
for e(N) also holds.

PROOF. We note simply that

e(N) <) AN <D 1A

agA agSt

For [ > d, we can give the following simpler estimate

w = o3 () (5)

(2;!)5 <%>d—s

9

QU ®
—= o

IN
o

o
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3 Hierarchies and the Method of Sparse Grids

d—1 9s D d—s
< X ld—l I
< e ()

— a_plld—l

s d—s
with a = ¢ - Zg;é z <ﬁ> . By adjusting the constant to cover the cases | < d,

this corresponds to the estimate already given by Smolyak [33]
E(N) < CLI ‘plldfl

for some o’ and [ > 1, noting that p corresponds to 27 in Smolyak’s paper.

We now proceed to determine the relationship between N and [. For this, assume
that Eval (A;) < b- ¢’ for some constant b and ¢ > 1. Note that this is follows
from the condition Eval (U;) < ﬁ%b - ¢'. This means that for a quadrature formula
hierarchy U; = Q9, we have b < % and ¢ = 2. For the multi-dimensional case, we

obtain
Eval (A,) < b¥gleh

The number of evaluations needed for S! is then for [ > d

N = > Eval(Ad)

aesSt
_ i ( k4d—1 )bdql

— d—1

!
k=0
< pgd-1yd-1 ¢t -1
< =1
This gives us
N <b-1971¢ (3.4.2)

for some constant b. On the other hand, we have

and therefore
logN >b-1 (3.4.3)

for some constant b.

Now let @y be the simplicial sparse grid quadrature for the index set S'. Since
we have p < 1 and ¢ > 1, there exists s > 0 with p = ¢~°. Using equation 3.4.2, we
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3.4 General error bounds
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Figure 3.4.1: A simplicial sparse grid vs. a full product grid

get the following estimate for the error for [ > 1:

e(NV)

IN

a- plldfl
— a-b. (5qzl<d—1>)*s L 1(d=1)(s+1)

< a- BSN~S . l(dfl)(sqtl)
Using equation 3.4.3, we obtain
e(N)<c- N~ - (log N)d- D+

for some constant ¢ and N > 2.

The quadrature formula used in the last section has ¢ =2 and p = 27", so in this
case we simply have s = r. The result in this case corresponds to that given in [29].
With this formula, we see that simplicial sparse grid quadrature has an asymptotic
convergence rate of 7, whereas the standard product quadrature has 3. Recalling
that standard product quadrature was equivalent to adding the contributions in or-
der of increasing |a__, we see that the simple change from |a|_ to |a|; makes all the
difference between the extremely bad convergence of 7 due to the curse of dimension-
ality, and a asymptotic convergence rate r that is as good as for a one-dimensional
function. Again, this is a very satisfying theoretical result. The logarithmic term
in N and the constants involved are so large for high dimensions d however that we
cannot hope to get near to asymptotic behavior in any actual calculations. We will
see in the empirical data in chapter 6 however that adaptive sparse grid quadrature
does far better than tensor product quadrature pre-asymptotically as well, as the
general arguments given at the beginning of section 3.2 are generally valid.

Remark 3.4.6 We close with a remark on the origin of the name “sparse grid” [35].
If we plot the points at which the function is evaluated for simplicial quadrature on
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3 Hierarchies and the Method of Sparse Grids

St as opposed to tensor product quadrature of level I, the former grid appears thinned
out, or “sparse”. This can be seen in figure 3.4.1 on the preceding page, which shows
the plots example for the nested Clenshaw-Curtis[7] rules with the hierarchy U; = Qo
ford=2 andl = 3.
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4 Index Refinement and Error
Estimates

4.1 Introduction

In the last chapter, we gave algorithm 3.2.3 for dimension-adaptive sparse grid in-
tegration. While good as it stands, it leaves many details to be worked out. Most
important of these, it begs the question of how the estimates for r, should be ob-
tained. We also need to address another problem, which arises for all numerical
approximation methods. It is the fact that simply returning a number for the in-
tegral estimate is worthless unless some sort of error bound is also given. It makes
quite a difference to receive a quadrature value of 2.14892 with error bounds of le-5,
le-1 or 1e100. As we will see, the problems of estimating the r, and of estimating
the error are intertwined. For this reason, we treat them both in the same chapter.

4.2 Index refinement

We use the term index refinement to describe the process of successively picking
indices for evaluation. As realized in algorithm 3.2.3, this corresponds to estimating
the values 7, for the valid indices at each step, and picking the index « with the
highest estimate. We recall that

1Al
“ Eval (Ap)

Since Eval (A,) is known, the problem boils down to estimating |A(f)].

4.2.1 Estimation using the direct predecessors

One possibility for estimating |A,(f)| is by using the values |Ag(f)| that we have
already obtained. We say that 3 is a direct predecessor of « if § = o — e; for some
i =1,...,d. For a given a, let cq,...,c, be the values of |Ag(f)| for the direct
predecessors 3 of a. This leads us directly to the following estimates for |A(f)|:

1
(Hf:1 cl-> " (the geometric mean estimator)

min ¢; (the minimum estimator)
i=1,...k

max ¢; (the maximum estimator)
i=1,...k
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4 Index Refinement and Error Estimates

Note that all these estimates are only defined if o has a least one direct predecessor,
so that £ > 1. This does not pose a problem. The only index that does not have
a direct predecessor is the zero index o = (0,...,0). Since the zero index is the
only index valid for the empty set, it is always the first index that is evaluated. For
this reason, we can set the estimate r, for the zero index to an arbitrary value, for
example 0. Since this estimate is not based on any information from the function,
it cannot be used for error estimation, so we start giving error estimates only when
the first index (or better the first few indices) have actually been evaluated.

Our choice of the three estimates geometric mean, minimum and maximum raises
the question of why the arithmetic average and the hyperbolic mean were not con-
sidered. The reason for this is practical in nature. For many functions, the values ¢;
will usually differ by orders of magnitude. In this case, the arithmetic average lies
close to the maximum, and the hyperbolic average lies close to the minimum. We
therefore restrict our considerations to the three most salient possibilities.

4.2.2 Estimation by evaluation

Another very direct way to estimate |Ay(f)| is to compute it by evaluating A, (f)
(note that the term estimate is used in a rather misleading sense here). Of course,
since each evaluation A, (f) represents a further refinement of the quadrature value,
and having calculated the A, (f) for all valid indices anyway, we would be ill-advised
not to use these contributions for the quadrature result. This leads to the following,
somewhat modified version of algorithm 3.2.3. This algorithm corresponds closely to
the one given in [16]. The only difference is that in [16], instead of picking the index
with the highest value for r,, the index with the highest value of |A,(f)]| is chosen;
that is, the contribution is not weighted by the evaluation complexity.

Algorithm 4.2.1 Start with A := ().
Repeat until a specified condition is reached:
Let B be the set of valid indices with respect to A.
Set s := 3 caup Aalf)-
From the set of indices valid with respect to A, pick the index o with the highest
value for r,.
Set A:= AU {a}.
End Repeat

We see that at any point of the algorithm, the result of quadrature s is the sum of
all contributions from indices that are either in A or valid with respect to A. The
contribution Ag(f) must be calculated as soon as 3 becomes valid. The assignment
5:= > oecaup Da(f) can be replaced by s := s+ o Aq(f), where C is the set of
those indices in AU B whose contributions have not yet been added to s. While this
approach takes a little more work to implement, it should be used in practice, since
it avoids adding all contributions from scratch for each iteration.
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4.3 Error estimates

4.2.3 Trivial estimation

Finally we give a trivial case. We simply estimate |A,(f)| to be some constant,
for example 1 (again, using the word estimation in a rather loose sense). In this
1

case, we have r, = Evalia)’ meaning that the indices are traversed in the order of

increasing evaluation complexity. In many cases, for example if Eval (A;) = 2, we
have Eval (A,) > Eval (Ag) for |a|; > |5];. In these cases, the adaptive algorithm
defaults to the classical simplicial method (with the addition that it is possible that
the algorithm may finish when only part of the last layer {a : |a|; = [} of the simplex
S; has been added, leaving us with an index shape in between S;_jand ;).

4.3 Error estimates

We now turn to the problem of error estimates. The most important property of an
error estimate n(N) is that it is valid, i.e. that we have ¢(N) < n(N) for all N.
Put differently, n(N) should never underestimate the error ¢(N), as this would lead
to spurious results for all work depending on these quadrature results. On the other
hand, we also want to avoid a large degree of overestimation. Note that with this
definition, n(N) = 105 is a valid estimate if ¢(N) = 2%, but it is certainly not a
very good one. Therefore, while we always require our estimates to be valid, we also
wish for them to be efficient for them to be useful, i.e. for n(N) generally to be
only slightly larger or at least of the same order of magnitude as e(N).

4.3.1 Estimates using the index structure

A first observation is that if at a given iteration of the algorithm we take the set A
of evaluated indices, the current result of quadrature is s = Y 4 Ay(f). The error
is then constrained by

eN) = |s=I(f)

= DA =D Aulf)

acA a€eNd
= Z Aa (f)
agA

< > 1AL

agA

We now assume that A, (f) is exponentially convergent to the base p < 1 (see
definition 3.4.1). We further assume that this estimate is reflected in the actual
contributions, that is, that we have

1A5(F)] < plBh=lah) A, (f)]
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4 Index Refinement and Error Estimates

for all successors 8 of a. This allows us to give a bound for the sum of the contribu-
tions of all these successors:

S 180 < 1Aal- YD plfhieh)

Bz a, Bz a

B#a B#a

= a2 ) -1

~eNd

d
= |Aa(f)] (Z#) -1 (4.3.1)

1€EN

- manw((;ﬁﬁd—g

We now give a lemma and a proposition that turn this inequality for a single given
multi-index into a global error estimator.

Lemma 4.3.1 Let A be a valid set of indices. Let v ¢ A. Then there exists f < vy
so that B is valid with respect to A.

PROOF. We give a proof by induction.

For d = 1, we take i = max{j: (k) € Aforall k < j}. The maximum exists
because 0 is always a member of the set and the set is bounded by ~;. Let 5 = (i).
By definition of ¢, all predecessors of (3 lie in A, therefore (3 is valid. Since v ¢ A,
this also means that v cannot be a predecessor of 3. Since the partial order of
multi-indices is a total order for dimension 1, we conclude 3 < ~.

For d > 1, we assume the proposition has already been proved for the dimension
d — 1. For any d-dimensional set of indices D we denote the (d — 1)-dimensional
section through D at the height s in the last component by D®), i.e.

D) = {oz eNL:(ay,.. ., a4-1,8) € D}

Further, define @ = (aq,...,a4_1) for any d-dimensional index a.

Now take s = v4. The set A®) is valid, because for o/ € A®) and § < o/, we know
that (81,...,34-1,5) < a and therefore 8/ € A®) by definition. We have 5 ¢ A®).
This means that we can apply the inductive hypothesis to obtain a 3’ < % so that
(' is valid with respect to A®). In particular, this means that 3’ ¢ AG). Now let
r = max {j 8 e A® for all k < j}. As above, the maximum exists, and we have
7 <8 =14

Let 3 := (B],...,0,_y,r). Because 8/ < ¥ and r < 74, we have 8 < v, which
proves the first part of the lemma. Furthermore, we have 3’ ¢ A as otherwise r

44



4.3 Error estimates

would not be maximum. By definition of A("), this implies § ¢ A.

Now let a be any predecessor of 5. If ag = r = (34, then ¢ is predecessor of /3
and therefore (aq,...,aq_1,s) is predecessor of (1,...,Bq4-1,5) = . Because (' is
valid with respect to A®®), we have (a,...,a4_1,5) € A and finally o € A because
a < (a1,...,04-1,8) and A is valid. If on the other hand we have oy < r, then
because (31,...,08)_1,aq) € A and o < (B,...,8,_1,q4), we also have a € A.
Since a was an arbitrary predecessor of 3, and 5 ¢ A, we know that [ is valid with
respect to A. This proves the second part of the lemma, and completes the proof. [

Proposition 4.3.2 Let A be a valid set of indices and let B be the set of indices
valid with respect to A. Assume that

1AL(H)] < 1A5(f)| phh=1oh) (4.3.2)

fory >0 and p <1. Then

DA NI<e Y 1As()

v¢AUB BeEB

d
with ¢ = (1%) —1.
P

PRrROOF. Using inequality 4.3.1, we have

e Y 185Nl = Y e |Ay

BeB B€B
S 1AWl
Pl v >,
y# B
= D Y |A(f)] with Dgi={y:v> 8, v #}

BeB~yeDg

> 1AL(f)] with D= | ] Dy (4.3.3)

yeD BEB

Y

v

Now let v ¢ AU B. By the preceding lemma, we know there exists a § < 7 so
that 3 € B. Because v ¢ B, we even have v # (. This means that v € Dg C D.
Since v ¢ AU B was arbitrary, we have D D {y:v ¢ AU B}. Combining it with
the inequality above, we obtain

Yo AN 1A NI < e Y 185())]

¢ AUB ~eD BeB

which proves the proposition. ]

In this way, we have found a way to estimate e(NN) with the sum of contributions of in-
dices that are currently valid with respect to A. Note that the sum ¢34 4,5 [A~(f)]

45



4 Index Refinement and Error Estimates

for the quadrature error implies that we take s = > ., 5Aq(f) and not only
5= peaAa(f) in the algorithm. This was exactly the case for our modified algo-
rithm 4.2.1, so we can immediately use ¢~} 44,5 [A4(f)| as an error estimate for
it. However, we have the problem that p is generally not known.

The error estimate given in [16] corresponds to the estimate just given, with ¢
heuristically set to 1. With the above constraints and theory, we can predict this
estimator to only be valid if ¢ < 1, that is, if p < 1 — diﬁ. Even if this is not the
case, the estimator does seem to work reasonably well in practice. This is due to the
fact we have given inequalities and not equalities. Especially in 4.3.3, many indices
B that occur in several Dg are now considered only once in D. Also, we have used
the absolute value of contributions throughout, and the cancellation of contributions
of opposing signs may also attenuate the actual quadrature error.

There are other valid concerns, though. In particular, it is not clear how well the
assumption 4.3.2 holds. Obviously, sometimes the contribution A, (f) will have a
small absolute value simply by cancellation. We can hope that these sorts of effects
become statistically small if we have a large number of indices. However, there may
also be structural problems with 4.3.2, which may invalidate this approach.

We can modify this error estimate to work with our original algorithm 3.2.3. In-
stead of the actual contributions we have to take the estimates for the |Ag(f)]
with 3 valid, since the actual values are unknown. In this algorithm, we have
5 = Y aeaDalf), so we need to add the estimate for 3 [Ag(f)| to the error

BeB

estimate. In this way, we arrive at the estimate (c+ 1) - > 5. p dg, where each dg is
the estimate for |Ag(f)|. Again, we do not know the value of ¢, requiring us to take
some heuristic value.

4.3.2 Black box estimates

The approach developed in the last section is in a way very natural, as it takes
know local contributions and adds them to arrive at a global estimate, but we have
seen that it poses many problems. A totally different approach ignores all this
information, treating the sequence of quadrature results @Qn(f) as a black box. This
approach is suggested by the fact that for many functions in practice, we have a
robust convergence with a stable convergence rate over large stretches of N, i.e.
e(N) ~ c¢-N~" for some r > 1 and some range N € [Ny, N1]. As we have seen in the
last chapter, this sort of convergence is also expected from theoretical results.

Viewed in a bilogarithmic plot, we have log (¢(IV)) ~ logc — rlog N. Using a
simply linear regression, we can estimate the constants ¢ and r, yielding an error
estimate of

N(N) = cegt N""est

The problem is of course that we do not know e(N) itself. All we have is the
values Qn(f) as a function of N. Since Qn(f) is an estimate for I(f), for a
given N and for M < N we can estimate the error e (M) = |Qun(f) — I(f)| by
G (M,N) = |Qn(f) — Qu(f)|. Note that that the estimate ¢; we have given for
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Figure 4.3.1: ¢ (M)and ¢ (M, N) for ¢(N) = N~2 and N = 10°

€ (M) is dependent on both M and N. Indeed, for a fixed N, the estimate ¢; (M, N)
will generally become more accurate with increasing N, because Qn(f) — I(f) for
N — o0.

Note however that the closer M gets to N, the more we will underestimate the
error. To give an example, we take e(IN) = N2, The resulting graphs for € (M) and
¢1 (M, N) are shown in figure 4.3.1. We see that if M gets to close to N, we lose
the linearity of the function. If we want to get a good fit for our regression, we must
restrict ourselves to those values for M that are suitably smaller than V.

There is yet another concern. So far, we have assumed that €(N) decreases with
N. But this is usually not the case. Instead, e (M) will often oscillate around the
value 0, with the oscillations getting smaller with N. What we are interested in is not
the error per se, but rather the expected degree of inexactness. Thus, our definition
of (1 does not really capture our intent. One way to deal with this problem is to
simply stipulate that ( (M, N) be decreasing in M. This leads us to the definition

<2 (M’N) = ]\ifr}g}]\(/fé-l (M’N)

In this way, (2 (M, N) represents the maximum difference of Qpp(f) to Qn(f) for
M < M’ < M, capturing the intuition of the remaining inexactness or volatility of
Qu(f) far better. We can see this difference in figure 4.3.2.

The problem of underestimating for ¢ for M close to N still persists, however. We
have undertaken several attempts to overcome this problem, but none have been very
successful. An adaptive algorithm that attempts to lock in on the part of the curve
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Figure 4.3.2: (; (M, N) vs. (2 (M,N) for N = 10° and a Genz oscillatory function
for d = 8 and h = 18 (see chapter 6)

where the ¢ (M, N) deviates downward works in some cases, but goes wholly astray in
others. A more complex approach, which explicitly modeled this deviation, had the
same problem. In the end, we have settled to simply taking the interval [M%,M%],
that is, the third quarter of value of M in the bilogarithmic representation. This
seems to work reasonably well in practice, but is unsatisfactory from a theoretical
point of view.

Yet another problem is that the exponent r used above is not really a constant.
Heuristically speaking, it may change over time. For example for functions of the
class C°°, r will increase with N.

In conclusion, the black box estimate given in this section is far more heuristic
than the index-based estimate. Somewhat surprisingly, it often performs better in
practice, as we will see in chapter 6. Still, unsolved problems remain with this
approach, especially with the lower and upper cutoff for M used in regression.

4.4 Hybrid algorithms

It is very difficult to give error bounds for purely adaptive algorithms. The general
problem is that the algorithm bases its decisions on where to perform further refine-
ment on numerical values obtained at previous levels of refinement. If these values
are very small, the algorithm will not continue along this path of refinement. In
algorithm 3.2.3, for example, if an index « for some reason gets an r, that is very
small, its contribution will not be calculated for a long time (i.e. until all competing
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4.4 Hybrid algorithms

valid indices # have even smaller values rg). As long as « is not added to the index
set, it also blocks further refinement past this index, as no 8 with 8 > «, 0 # « can
become valid as long as a ¢ A.

For example, we can construct non-constant functions f of class C°° that have
Ae, (f) = 0. Indeed, this is true for all f € C* that have f(x) = 0 for all points
x evaluated for Ag,. As consequence, the algorithms given in section 4.2 will not
evaluate Ae, (f), generally making convergence impossible. Non-adaptive sparse grid
quadrature does not suffer from this problem, and we have given convergence results
to this effect in the last chapter.

What we would wish for, then, is a sparse grid quadrature algorithm that is at
least as good as an adaptive version while retaining the guaranteed convergence of
the simplicial (static) version. This is easier than it sounds. We need simply let the
adaptive and the non-adaptive version run in parallel, i.e. alternating between the
two with every evaluation and then selecting the better of the two results at each
step. This would only mean a moderate increase in evaluation complexity for each
algorithm by the constant factor 2. We would, however, need to figure out how to
choose which of the two results is better at any given time.

But this is not necessary, because we can do even better. Instead of letting the
two approaches, adaptive and static, run independently, we merge them, letting them
inform each other. For this, we give a modified hybrid version of our main algorithm
3.2.3 .

Algorithm 4.4.1 Start with A =10, s := 0, Nadapt = 0, Nstatic := 0.
Repeat until a specified condition is reached:
From the set of indices valid with respect to A, pick an index o with the highest
estimate for rq
From the set of indices valid with respect to A, pick an index 3 with the smallest
size of |3,
If Nadapt + Eval (An) < Nstatic Set ¥ := &, Nadapt = Nadapt + Eval (Ay)
otherwise set v := 3, Nstatic *= Nstatic + Eval (Ag)
Set A:=AU{~}
Set s := 5+ A (f)
End Repeat

In this way we alternate between adaptive and static indices, giving each an equal
share of the function evaluations. Of course, we cannot always exactly have ngg4.p; =
Nstatic- Indeed, once we pick a simplicial index « for evaluation, ngq e increases by
Eval (A,), which nggep remains constant, and vice versa for an adaptive index. The
algorithm above resolves this problem in a very one-sided manner, ensuring that at
any time we have nggept < Nstatic, that is, it is biased towards preferring simplicial
indices. This bias was chosen because we have known convergence results for the
simplicial algorithm, but none for the adaptive algorithm, and this bias allows us
to have the same guaranteed convergence rate for the hybrid algorithm by assuring
that at all times at least half the function evaluations have been used for simplicial

49



4 Index Refinement and Error Estimates

indices. Indeed, if for some number of function evaluations M the non-adaptive
algorithm has completed the simplex S, then we have A O S! for the hybrid version
at N = 2M. Using proposition 3.4.5, we see that elson'@(N) < estatic (%). In terms
of convergence rate, this translates to p"rid(N) = pstatic (4} in particular giving
us the same asymptotic convergence rate. On the other hand, the algorithm still
uses half its evaluations for adaptive indices, so we can expect it to perform as well
as the fully adaptive algorithm (again, with the caveat of needing an N that is twice
as large).

With this hybrid algorithm, adaptive and static methods work on the same index
set, cooperating and informing each other, instead of only running in parallel. In-
deed, some indices will be selected by both the static and the adaptive method. By
operating on a shared set of evaluated indices, these indices are evaluated only once,
in effect halving the evaluation complexity for these indices for each component.
Even more important is another result of this reciprocal cooperativity. Returning to
the example above, where we had Ae, (f) = 0, we see that now the index e; would
soon be evaluated as a static index. In this way, all indices § > e, 0 # e; are not
only evaluated by the static method, but also opened up for the adaptive algorithm,
which so to speak is lifted over the road-block of e; by the static method. We can
therefore expect hybrid methods to attain better results than the optimum of the
solely static or the solely adaptive methods together.

Of course, the number of function evaluations allotted to the non-adaptive method
need not be %, and we can easily modify the algorithm to support any ratio. For any
ratio r > 0 of simplicial function evaluations out of all evaluations, we can give the
same guarantee on convergence and asymptotic convergence rate as above, noting
that in this case the convergence is slowed by the factor % For the special case of
r = 1, we get the non-adaptive version of the algorithm. On the other hand, for
the ratio » = 0, we get the fully adaptive version, and do not have a guarantee of

convergence as above.
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5 The Implementation

5.1 Introduction

We have implemented the dimension-adaptive algorithm of sparse grid integration
for the computer. Although the algorithm in its stated form seems simple enough,
many difficult choices have to be made during implementation pertaining to problems
such as estimation of the index contribution, error estimation and data structures.
In many cases, it was not clear a priori what the best choice would be. For this
reason, an object-oriented programming language was chosen, which allows for the
easy and robust design of the program in a modular fashion. For each of these
modules we can then program different implementations, which can be mixed and
matched seamlessly to find the optimal combination.

We have chosen Java as a programming language for several reasons. The most
important is its stringent object-oriented design, which allows for a clearer struc-
ture than C++. It provides a high level of safety mechanisms (for example array
bound enforcement) and reduces program complexity (for example through auto-
matic garbage collection). It is also available for a wide variety of platforms, where
it can be run immediately without the need for error-prone recompilation. On the
other hand, Java is not well respected in the high performance community because
it is perceived as significantly slower than C/C++. While this was true for the very
first Java versions, the use of just in time compiler technology has significantly closed
the gap. Indeed, current versions of Java outperform C in several benchmarks|21].
In any case, the current implementation is intended to explore general possibilities
of implementation, and to compare the different strategies and choices for the differ-
ent modules, and not to give maximum performance. Java was chosen as the best
compromise for a programming language that is established, offers relatively high
performance, and allows for easy and robust development.

In the following sections, we describe the various modules that make up the im-
plementation and compare the different options for their realization. We will only
explain the main ideas behind the code, limiting discussion of the details of imple-
mentation to the essentials. For details, we refer to the authors website[25], where
all code and extensive documentation are available.

5.2 The core algorithm

In the algorithm 3.2.3, we specified no method by which to arrive at an estimate for
the r,. We have developed several mechanism for estimation, which are realized as
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5 The Implementation

different classes. All of these classes implement the main interface

public interface Integrator<Evaluator> {
IntegrationResult integrate(Evaluator integrand,
StopCondition condition,
List<Visualizer> visualizers)
throws IntegrationFailedException;

We will describe the two major implementations of the this interface. The class
EstimateIntegrator implements algorithm 4.4.1, supporting simplicial quotas be-
tween 0 (fully adaptive) and 1 (non-adaptive). It can use the minimum, maximum
and geometric estimate introduced in section 4.2.1. The class EvaluateIntegrator
implements a hybrid version of algorithm 4.2.1, and also supports simplicial quotas
between 0 and 1.

The method integrate forms the main entry point for quadrature. The integrator
classes all work the same way: They perform an open-ended quadrature until the
condition specified by the given StopCondition class is reached. At this point, the
method returns, giving an IntegrationResult return value. This class gives the
result of quadrature, an error estimate and the number of times the function has
been evaluated during quadrature. It may also give supplemental information about
the quadrature process, for example issuing a warning that the function behaved
erratically and that the results should therefore be treated with caution.

The third argument gives a list of classes that give visual feedback about the
quadrature process. We will cover this part of the implementation in detail in section
5.5.

The most tricky part of the implementation concerns the first argument. What
must be understood is that the algorithm as implemented never itself sees the func-
tion to be integrated. Indeed, such a function must not even exist. Instead of a
function, the first argument specifies a more abstract Evaluator:

public interface Evaluator {
int dimension();
double deltaEvaluate(Index index)
throws IntegrationFailedException;
boolean canEvaluate(Index index);
int pointsForIndex(Index index);

We first cover the standard case, where the Evaluator directly acts on a function. In
this case, the first method returns the function dimension. The second method takes
a multi-index a (implemented as Index) and returns the value A, (f) for that index.
The third method declares whether the Evaluator is able to evaluate the value for
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5.2 The core algorithm

the given index. Evaluation may not be possible, for example, if the one-dimensional
quadrature formula used by the Evaluator only supports a limited number of nodes.
If evaluation is possible, the last method returns the number of function evaluations
need to perform evaluation and compute the value A, (f) for the given index.

This, as stated, is the standard case. As we can see, the Evaluator makes no
explicit mention of a function anywhere. It is a black box that only returns a di-
mension, some value for each index, and information on whether an index can be
evaluated and how costly this is. No restrictions are made on where this information
comes from. We have implemented non-standard evaluators for infinite-dimensional
integrals and for virtual indices, where several indices are subsumed to one, reducing
the size of the index set. As of the writing of this thesis, both of these components
are still in early development, and are not covered further.

Another feature of algorithm 3.2.3 that has to be cast into more concrete terms
is the stopping condition. We can easily come up with several such conditions that
may be of use:

e Stop when the estimate for the error e¢(N) falls below a given threshold

e Stop when the estimate for the relative error % falls below a given thresh-

old

e Stop when the number of function evaluations IV reaches a given threshold

All of these are available in the implementation. They are realized as classes imple-
menting the interface StopCondition:

public interface StopCondition {
boolean stop(IntegrationResult result);

The main method is stop(IntegrationResult). It takes an IntegrationResult
supplied by the main algorithm, which describes the current state of integration.
Based on this information, the method returns true if the condition is satisfied
and false otherwise. The class MultipleStopCondition allows the combination
of several stopping conditions, returning the signal to stop as soon as one of the
constituent conditions is satisfied.

Special care needs to be taken with the stopping conditions based on the error esti-
mate. This is because the error estimate returned as part of the IntegrationResult
may underlie fluctuations due to the sampling process. If we poll the error estimate
continuously to see if it has fallen below a given threshold, these fluctuations bias us
towards stopping too early. The reason for this one-sided bias is that stopping is a
one-sided operation. If we stop, we don’t continue to see if maybe the error estimate
goes up again. If we don’t stop, however, we simply continue, sampling the error
estimate until it does fall below the threshold. We have tried to mitigate this decision
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‘ Name ‘ Distribution ‘ Hierarchy ‘ Exact on ‘ Nested ‘
Trapezoidal AL ([0,1]) N —i]_\fl()()):—zlll 1 n/a yes
Gauss-Legendre | ! ([0,1]) N()=2"*1 -1 Pan()-1 no
Clenshaw-Curtis | A (]0,1]) N({)=2"1-1 Pny—1 yes
Patterson A ([o,1]) N({)=2"1-1 Ps N4 yes
Gauss-Hermite N(0,1) N({)=2"1-1 Pan()—1 no

Table 5.1: Properties of the different quadrature rules

bias at least somewhat by only sampling the error estimate at increasing intervals.
In the implementation, we have chosen the following strategy: if we sample the error
rate at N = M, we wait until N > %M until sampling again.

5.3 The quadrature formulas

The implementation supports a wide range of quadrature rules. For Q = [0, 1] and
p = A ([0,1]), we have trapezoidal rules, Gauss-Legendre rules, Clenshaw-Curtis|7]
rules and Patterson rules (a.k.a. Kronrod-Legendre rules)[31]. The Patterson rules
are designed to attain a maximal level of polynomial exactness while retaining nodes
from previous levels (i.e. being nested). Some of the rules given here originally refer
to an interval different from [0, 1]. In this case, they have been rescaled accordingly.
The case of @ = R and p = N (0,1), where N(0,1) denotes the Gaussian normal
distribution, is supported by a rescaled version of the Gauss-Hermite rules. The
properties of the quadrature rules as implemented are summarized in table 5.1. For
each of these quadrature rules, we have a hierarchy of quadrature formulas U; (com-
pare section 3.2). The hierarchy column of the table gives the relationship between
the level [ and the number of nodes N (I) for that level.
The quadrature formulas U; are Dirac sums, and are modeled by the

public class QuadratureFormula {
public int getSize();
public double getNode(int index);
public double getWeight(int index);

These method getSize() returns the number of nodes of the Dirac sum, and thus
corresponds to N (I) (again using the notation from section 3.2). The nodes and
weights themselves are returned by the eponymous methods.

In this way, each quadrature rule can be implemented as a class that returns a
QuadratureFormula for each level [. This idea is captured in the

public interface Generator {
QuadratureFormula getByLevel(int level);

54



5.4 The applet

int maxLevel();

Most of the generators produce the requested quadrature formula on the fly. This
causes a brief delay the first time a quadrature formula is requested for a given level.
Once it has been produced, however, the QuadratureFormula is stored in a cache
and is available without any delay on subsequent request. In contrast to this, the
Patterson quadrature rule works with pre-specified tables of values. In both cases,
only levels up to the maximum supplied by the method maxLevel() are supported.
This is either because the algorithm for quadrature formula generation is numerically
stable only up to a certain level and number of nodes, or, in the case of the Patterson
rules, because tabulated values are only available up to a maximum level.

The class DeltaGenerator is used to produce the A; that are needed for sparse
grid quadrature. It wraps around a Generator for a specific quadrature rule, pro-
ducing the A; from the U; produced by this Generator. The DeltaGenerator class
automatically recognizes when some nodes used in U are present again in U4, as
in the Patterson formula. In these cases, it fuses the weights from U; and U;yq to
produce only one node for the combined weight, so that the total number of nodes
and therefore Eval (A;;1) is as small as possible.

5.4 The applet

The implementation contains a Java applet that serves as an interactive front end for
the quadrature process. It allows the user to select from various function classes and
to set the stopping conditions. It supports dimension-adaptive sparse grid quadra-
ture, non-adaptive sparse grid quadrature, Monte Carlo quadrature and Quasi-Monte
Carlo quadrature. The quadrature rules can be specified for both the adaptive and
the non-adaptive sparse grid quadrature method. For adaptive sparse grid quadra-
ture, the user can also select various refinement and error estimation strategies.

In figure 5.5.1, we see some of these settings in the window at the top center.
Specifically, the adaptive sparse grid (“ASG”) quadrature is used with the Patterson
rules for the Genz oscillatory function (see chapter 6) with dimension 8 and difficulty
18.

5.5 Visualization

The implementation supports a wide range of modules for visualizing the quadra-
ture process online. This has proved extremely helpful in the development of the
algorithms, as the graphic display of relevant data makes it far easier to analyze
and grasp intuitively why the algorithm is or is not working, and are more revealing
than only benchmark data on convergence. In the same vein, changes to the algo-
rithm can immediately be assessed, and parameters can be tuned interactively. A
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screenshot of the implementation with several visualization modules active is shown
in figure 5.5.1 on the next page.

The figure shows the results of a quadrature for a Genz oscillatory function with
dimension 8 and difficulty 18. We used the fully adaptive approach with contribution
estimation by geometric average, and performed quadrature up to N = 10* evalu-
ations. We will give a short description of the components shown. For a detailed
description of all the features, please refer to the online documentation and code at
[25].

5.56.1 The Grid window

The grid window shows 2-dimensional slices through the index set. The top two
sliders allow the user to select the dimensions 7 and j of interest. The window
then displays all indices o with ag = 0 for k # i,j. The sizes of the contributions
A, (f) are visualized in the left pane by color scale. A black dot signifies a positive
contribution, otherwise we have A,(f) < 0. The slider on the right adjusts the
color scale. The slider on the bottom is used to retroactively analyze the quadrature
process. It allows the user to select any M with 0 < M < N, and show the state of
quadrature at this point in the process. On the right pane, we see the contributions
known to the algorithm at this point as full squares. The valid indices and the
current estimates for the size of their contributions are shown as the smaller squares.
A mouse-over function displays the numerical values of A,(f), its estimate and
Eval (A, (f)) for the indices.

5.5.2 The Extent window

This visualization component display the maximum |a|; encountered during quadra-
ture as a red horizontal bar. The black vertical bars display the maximum «; en-
countered for each dimension ¢ = 1,...,d. This allows the user to quickly appreciate
how important each dimension was in the quadrature process.

5.56.3 The Result window

The result window displays the quadrature error ¢(N) and several related statistics
over the course of quadrature. Of course, the actual error ¢(N) can only be shown if
the correct value for the integral I(f) is known. The main panel shows a bilogarithmic
plot displaying the various statistics against the function calls N on the abscissa. The
red and black curve shows the absolute value of the error |e(N)|; a black segment
indicates that e(N) is positive for this segment, and a red segment that it is negative.
The pink curve displays the error estimate given by the quadrature algorithm with
respect to N.

The error line starts at the first vertical grid line, which corresponds to N = 1.
The next gridlines are for N = 10, N = 100, etc. The pink error curve only starts
at N = 300, because for N < 300, the algorithm deemed the amount of information
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Figure 5.5.1: The application
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accumulated too small to give a meaningful estimate. The different sliders allow the
user to adjust the section of the plot that is shown. This window also features a
mouse-over function that numerically displays the grid coordinates in the plot.

5.5.4 The Contribution window

The contribution window shows the actual values of r, for evaluated and non-
evaluated indices. The top pane shows 7, for those indices aq, ao, ..., ap that were
evaluated during quadrature. The sizesof the r, is plotted logarithmically against
the non-logarithmic abscissa i=1,...,k. Again, black codes for positive and red for
negative contributions. The lower pane shows the values for rg for those indices 3
that were not evaluated by the quadrature algorithm. These are sorted in order of
decreasing 7. The values rg are computed in the background after the quadrature
is finished in an open-ended process.

The top pane of the window can be used to assess if the algorithm actually did
manage to trawl through the indices in order of decreasing r,. Any indices 8 with
large rg that the algorithm missed will be visible in the lower pane. In an ideal
world, the top panel would show a graph of monotonously decreasing r,, and all 74
in the lower pane would be smaller than the rightmost (lowest) r, of the top pane,
meaning that the algorithm used the optimal set of indices.

5.6 Data structures and complexity

Throughout this thesis, we have used the evaluation complexity N as basis for de-
scribing the efficiency of our algorithms. In this section, we justify this choice for our
main algorithm 3.2.3. This is not trivial. We need complicated data structures for
managing the set of multi-indices, and we need to pay careful attention that these
structures are efficient. Otherwise, we might spend more time managing ourselves
than doing actual work!.

5.6.1 Multi-indices

Multi-indices are modeled by the interface Index. They conform to the immutable
pattern, that is, the multi-index « they represent cannot be modified once they have
been instantiated. This allows the indices to be freely used and exchanged in the
program without extra logic to ensure that they are not modified outside of their
current scope.

The multi-index itself is coded in a sparse fashion, so that instead of all «;, the
index stores tuples (i, a;) for only those i where a; > 0. Let C («) denote the number
of non-zero components for the index «, i.e. C(«):= #{i: o; > 0}. In this way, the
amount of memory required to store an index is independent of the dimension of the
problem and is instead proportional to C(«). Because C(«) < d, the dimension d

! Although tempted, the author refrains from any obvious jokes about bureaucracy
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forms an upper bound for C(«). Often, especially for high d, C'(«) will be far smaller
than d.

The tuples (7, ;) are stored in order of increasing ¢. This allows us to perform a
binary search on the tuples when a particular component is accessed, with logarithmic
time in C'(«).

5.6.2 The index set

The set of indices is stored by means of a hash table, which allows fast random
access. This is important because the algorithm often needs to access the direct
predecessors of a given index [, for example to calculate its expected contribution
as per section 4.2.1, or to determine if all direct predecessors of 3 are already in the
set, and therefore (3 is valid. The lookup time of a hash table is of the order C(3).

5.6.3 Queues

An important part of the algorithm is finding an index a with a maximum value of
ro. To accomplish this efficiently, the valid indices are stored in a priority queue.
A priority queue of the size M takes time on the order of log, (M + 1) for inserting
elements and for removing a maximum element, which is far more efficient than the
time of the order M that would be used for trawling through all elements to find an
element with a maximum value.

5.6.4 The complete algorithm

We now give a step by step walk-through of the algorithm 3.2.3, listing all operations
that have time dependent on d and N. For this section, we assume that Eval (4;) >
2. This is the case for all quadrature rules in the implementation.

The following operations are performed for each index in the index set:

1. We evaluate A,(f) for the index. Because Eval (4A;) > 2¢ this corresponds
to at least 2!%h evaluations of the d-dimensional function, giving a total time
order of at least d - 2@,

2. We add « to the index set. The time required is of the order C(«).

3. We figure out which new indices have become valid through the last step. For
this, we check each of the forward neighbors a+e;, i = 1,...,d if it has become
valid. The index « + e; has become valid if all its backward neighbors are in
the index set. Since an index has C(«a + e;) < C(a) + 1 backward neighbors,
and checking whether an index § = a+e; —e; is in the set requires C(3) time
with C(8) < C(«a), the total time is of the order d - (C(a) + 1)2,

Adding these terms, the time for the management operations is of the order

Cla) +d- (C(a) + 1)2
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On the other hand, the time for function evaluations is at least
d.QWh

Because C'(a) < |a;, this shows that management time is at most of the same order
as the time for function evaluations.

We need also examine the operations related to the index queue. Here, the sit-
uation is more complicated. We first examine the simplicial case. For this, let §;,
i € N be a list of all indices in order of increasing length |3;|,. We give the following
proposition.

Proposition 5.6.1 Let S € N, and let A = {3; : i < S}. Let N(S) be the corre-
sponding number of function evaluations. Then we have

S
ZlogQ(k: +1) <max(3,d) - N(S)
k=1

PROOF. Let a = max(3,d). We use the fact that
S S
a-N(S)=a- ZEV&I(Aﬁk) > Za - 2Pk
k=1 k=1

and perform a componentwise comparison of the two sums

S S
Zlogg(k—i—l) and Za-?‘ﬁk‘l
k=1 k=1

For a given k, let
I =max{r: #S, <k}

be the level of the largest simplex with less or equal than k elements. Because the
indices [3; are arranged in simplicial order, this means that |G| > [ and therefore

ol < olfkh (5.6.1)
We have
d+1+1
k< #S4, = ( T ) < (d+1+ 1)
l+1
and therefore
logy(k+1) < (I+1)logy(d+1+1) (5.6.2)
We now want to prove that for [ > 1
(1+1)logy(d+1+1) <a-2 (5.6.3)
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5.6 Data structures and complexity
By definition of a, this holds for [ = 1. It also holds for [ > 1 because

)
= <a-2l—(l+1)log2(d+l+1)>

1
— a-(log2) -2 —logy(d+1+1) 4 —

d+1+1
2

> gd-21—1og2(d+l+1)+1

> 0

Combining equation 5.6.3 with equations 5.6.1 and 5.6.2 yields
logy(k + 1) < a - 215
which completes the proof. ]

Corollary 5.6.2 Let A be an arbitrary index set, and S = #A. Let N the number
of function evaluations. Then

S
ZlogQ(k: +1) <max(3,d) - N
i=1
PROOF. We need simply arrange the elements g, ..., as in order of increasing
length. Because the (i, ..., s have minimal length, we have leily > 2lBili for 4 =
1,...,S and therefore N > N(S5). O

For algorithm 4.2.1, the indices in the queue are always a subset of the index set A.
At the time that we evaluate index «y, there can therefore be at most k indices in
the queue. A queue operation then needs time of the order logy(k + 1). For each
index, we have one insertion and at most one removal. Therefore the total time for

queue operations is
S

2. Zlogz(k +1)
k=1
which by the corollary is of the same order as the time d - N used for evaluating the
function.

The situation is less favorable for algorithm 3.2.3. Here, for each index in the index
set, up to d forward neighbors may be placed in the queue along with an estimate for
their contribution without any time being spent for evaluation of the contribution
of these indices. Indeed, we can construct index sets for which the amount of time
for queue operations is larger by the order of d than the amount of time spent on
function evaluations. In this respect, algorithm 4.2.1 is preferable to algorithm 3.2.3
for large dimensions d, as the latter may then spend the larger amount of time with
management instead of actual evaluation work.

61



5 The Implementation

62



6 The Genz Test Suite

6.1 Introduction

The theoretical results available for the convergence of a specific quadrature method
only give some indication to its utility. For one, theoretical results are usually only
available for specific cases. In practice, we often observe that a quadrature method
performs quite well for many functions for which no theoretical error bounds are
known. Even where theoretical results are available, they generally give only upper
bounds for a whole class of functions, and are valid for the worst case performance
within this class, even though performance may be much better for the majority of
functions. For this reason, a computer-based benchmark that gives real-world per-
formance constitutes a valuable complement to the convergence results from theory.

6.2 The Genz test functions

Genz [14] proposed a test suite for benchmarking multi-dimensional quadrature
methods in 1984. The suite is composed of six different functions classes, each repre-
senting an aspect or problem typical for multi-dimensional integration. All function
classes have been designed to be used on the multi-dimensional unit cube [0, 1]¢ with
the measure A? ([0, 1]9):

d
fi(z) = cos (27ru1 + Zai%)
i=1

fa(z) = ﬁ(afer(%—uz‘)z)_l

=1
d
fa(z) = exp <_ Za? (z; — u2)2>
i=1
d
f5 () = exp (- Zai |z; — ui|>
i=1
0 for 1 > w1 or x9 > us
- d
folw) exp (Z aiaci> otherwise
i=1
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Figure 6.2.1: The Genz test functions
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6.2 The Genz test functions

bhl 44

These functions are given the names “oscillatory”, “product peak”, “corner peak”,
“Gaussian”, “continuous” and “discontinuous”, respectively, reflecting their salient
characteristics. Illustrations of these functions for d = 2 are given in figure 6.2.1 on

the facing page.

Each function is dependent on a set of parameters a; and u;. The parameters
ai,...,aq can take values in Ry g and reflect the difficulty of quadrature, for exam-
ple determining how quickly the function oscillates or how sharp the peak is. The
parameters uq, ..., uq take values in [0,1] and are more or less independent of the
difficulty, instead shifting the function in space. For example, they determine the
position of the wave crests for f or of the discontinuity for fs. In this way, each func-
tion class has many different representatives. We can therefore run our benchmark
with a large number of functions for each class, and give statistical comparisons for
the different function classes.

The Genz functions were designed in such a way that their integrals can be easily
determined analytically. We have

I(f) = 2 cos( <4m1+za,>ﬂsm< )) (Ha)

d
I(fe) = Ha' (arctan (a; (1 — u;)) + arctan (a;u;))

-1

_ ‘C“|1
() = (dvﬂaz> P

ae{0,1}¢ 143 i uai
d

I(fs) = H
I(fs) = H ( ai“i_e_ai(l—ui))

(aju;) — erf (a; (u; — 1)))

—1
mln( d) d )
i 1 4 eai 1
T e
i=1 =3
where erf (z) f Iy e ~dt is the error function.

When generating test functions, we choose the a; and u; pseudo-randomly with
hi-a;
llally

number hy for each function class. This hy then reflects the difficulty level of the
function fj that is generated. The difficulty levels hg, K = 1,...,6 must be deter-
mined in advance for each dimension d examined. They should be chosen in such a

uniform distribution on [0,1]. The a; are then rescaled to a] := for a given

way that the different functions classes have comparable difficulty in some sense.
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6 The Genz Test Suite

6.3 Finding good parameters for the algorithm

In the last chapter we have seen that the implementation of the dimension-adaptive
sparse grid quadrature algorithm is composed of many different modules, each of
which has different realizations. In this section, we will use the Genz test suite as a
benchmark to select which combination of realizations for these modules works best.
Because of the large set of parameters, we do not attempt an optimization on the full
parameter space. Rather, we only modify one parameter at a time, holding the other
parameters fixed, and hoping that the optimum found then is also the optimum in
other cases. Indeed, the modules are to a large part independent of one another, and
the results rather clear, so that this assumption gains credibility.
We have performed the benchmarks in dimension d = 8, using the difficulties

hh = 9
hy = 19
hy = 2.1
hy = 12
hs = 15
he = 2.9

We used the Monte Carlo method as a baseline for determining these values. Specif-
ically, we chose h; so that for N = 10* function evaluations, the relative error of
quadrature for the Monte Carlo method was about 102, We have calculated the
results of quadrature Qn(f) for N = 100, 200, 400, ..., 102400. In some cases, the
actual values are slightly higher due to the fact that calculating the contribution for
an index is an atomic operation for the algorithm. For each benchmark, we evaluated
100 randomly generated functions from each class.

6.3.1 The choice of index refinement strategy

We compared the following index refinement strategies:

‘ Algorithm Descriptor

Algorithm 4.2.1 Evaluate
Algorithm 3.2.3 with minimum estimator | Estimate Min

Algorithm 3.2.3 with maximum estimator | Estimate Max

Algorithm 3.2.3 with geometric estimator | Estimate Geom

In each case, we use a hybrid version of the algorithm with a simplicial quota of 0.5,
and the Gauss-Legendre quadrature rules. The results are shown in figure 6.3.1 on
the next page. Here and in all subsequent figures of this type, we plot the average
number of correct digits (that is —log;, %) against log;y N. We see the differences

between the various refinement strategies are not very large, showing that the general
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Figure 6.3.1: Comparison of different refinement strategies with fixed quadrature rule
(Gauss-Legendre) and simplicial quota (0.5)
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strategy of the algorithm is only influenced little by the specific form of the estimate.
Of the all strategies, “Estimate Min” seems to perform best overall by a little bit, so
we have chosen it for further testing.

6.3.2 The choice of quadrature rules

Taking the “Estimate Min” algorithm with a simplicial ratio of 0.5, we now compare
different quadrature rules:

‘ Quadrature Rule ‘ Comment ‘

Patterson Nested rule with optimal degree of polynomial exactness
(of the order 3N)

Clenshaw-Curtis | Nested rule with suboptimal polynomial exactness (of the
order N)

Gauss-Legendre | Non-nested rule with optimal degree of polynomial exact-
ness (of the order 2N)

Trapezoidal Nested rule for piecewise linear interpolation

The results are shown in 6.3.2 on the facing page. We see that that the Patterson
rules perform best, closely followed by Gauss-Legendre. It seems that the higher
polynomial exactness afforded by Gauss-Legendre loses out to the fact that it requires
more evaluations because it is not nested. The Clenshaw-Curtis rules are structurally
inferior to the Patterson rules, and perform noticeably worse. The trapezoidal rules,
which do not use differentiable structure much, unsurprisingly come in last.

There is however a surprise: Looking at the results for the Continuous class, we
see that the polynomial interpolation rules perform quite a bit better than the trape-
zoidal rule. This is unexpected, because in the Continuous case, no derivative exists,
so there is no theoretical reason to expect polynomial interpolation to perform bet-
ter than trapezoidal quadrature. Indeed, looking at the results of the Discontinuous
class, this is exactly what we see. There is no smoothness to be taken advantage of,
and all quadrature formulas perform equally.

6.3.3 The choice of the simplicial ratio

So far, we have established the “Estimate Min” algorithm with a simplicial ration
of 0.5 and the Patterson rules to be the best choice for our particular Genz bench-
mark. We now vary the simplicial ratio, to see in what way the adaptive algorithm
performs better than simplicial quadrature, and whether the combination between
the two does indeed exhibit synergistic effects, as speculated in section 4.4. We test
the following simplex ratios:
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Figure 6.3.2: Comparison of different quadrature rules with fixed refinement strategy
(Estimate Min) and simplicial quota (0.5)
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Simplicial ratio Comment
0.0 Fully adaptive
0.1 Adaptive with small non-adaptive component
0.5 Half-half hybrid
1.0 Classical non-adaptive quadrature

The results are shown in 6.3.3 on the next page. We see that for the smooth Genz
functions, full adaptivity works best, and additional simplicial components simply
slow down the algorithm in finding the best indices. The situation is quite different
for the Discontinuous class. Here, the adaptive algorithm fails completely to identify
the best indices. However, neither does the fully non-adaptive algorithm perform
best. Here we indeed have the case that the two components inform each other, and
the half-half hybrid comes out on top. It seems that the less smooth a problem is,
the more irregular is the index structure. In these cases, the adaptive method goes
awry, and should be supported by a strong non-adaptive component.

In conclusion, we choose the ratio of 0.5 for our algorithm. As seen in figure 6.3.3 on
the facing page, the convergence is only slightly worse, but we gain a great deal of
robustness.

6.4 Comparisons with the standard methods

6.4.1 d=8

We are now ready to compare the adaptive sparse grid method with the established
multi-dimensional quadrature methods described in chapter 2. Specifically, we com-
pare the following methods:

Method Descriptor
Adaptive sparse grid, minimum estimator, 0.5 simplicial ratio, | Adaptive
Patterson rule

Non-adaptive sparse grid with Patterson rule Simplicial
Tensor-product quadrature with Gauss-Legendre rule Product
Quasi-Monte Carlo quadrature with Halton sequence QMC
Monte Carlo quadrature MC

The “Product” quadrature was introduced in chapter 2 to be of the form Q%d.

This would allow only the numbers M¢ M = 1,2,... for the number of function
evaluations. For d = 8, this corresponds to the integers 1, 256, 6561, 65536, ... which
are spaced apart too far to fit in with our sequence 100, 200, 400, ... of evaluations.

We have mitigated the problem by mixing formulas of the type Qs and Qar—1 to
give a product quadrature formulas of the type Q%k®Q;\82(iIk) fork=1,...,d, which
allows a better approximation of the given values.
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Figure 6.3.3: Comparison of different simplicial ratios with fixed refinement strategy

(Estimate Min) and quadrature rule (Patterson)
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Figure 6.4.1: Comparison of the different quadrature methods for dimension 8
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The results of the comparison are shown in 6.4.1 on the preceding page. We see that
the “Adaptive” method does well for the smooth Genz functions, although it loses out
to “QMC” for the Corner Peak. It should be noted that, in contrast to expectations
based on logarithmic convergence rates (see 2.6) , the “Product” quadrature does not
do too badly, although the “Adaptive” quadrature has overall better performance.
For the Continuous and Discontinuous classes, we see that “QMC” is the method of
choice. For these classes, interpolation methods cannot make use of any smoothness,

and therefore show slow convergence.

6.4.2 d=4

To see to what extent the relative advantages of the algorithms depend on the di-
mension of the function, we have also performed benchmarks for the cases d = 4 and
d = 16 (next section). The calibration of the difficulties for the Genz classes was
performed as in section 6.3, yielding:

h = 8
hy = 18
hy = 3
he = 10
hs = 17
he = 3

The results are shown in figure 6.4.2 on the following page. We see that for
dimension 4, standard tensor product quadrature performs well for the smooth Genz
classes, overall being on par with the adaptive sparse grid approach. Simplicial sparse
grids perform only a little worse than the adaptive version. For the Continuous and
Discontinuous classes, again the sampling methods dominate. Note that due to the
limitations of floating point arithmetic, an accuracy of about 14 digits is the highest
attained.

6.4.3 d=16

In this case, the difficulties obtained from calibration were:

hh = 8
hy = 20
hy = 1.5
hy = 16
hs = 26

73



6 The Genz Test Suite

Genz Oscillatory dimension=4 Genz Product Peak dimension=4
15 6 I
M —+— Adaptive |
14 —=— Simplicial /|
13 5 +- —&—Product &
12 —e—-QMC #
—x—MC /
1 4
10
—o— Adaptive -
3 97 I 3]
o —=— Simplicial | | @ 31
s 81 —— Product 3
L2 74 —o—-QMC 2
= o2 24
g 6 —*—MC a
5
14
4
3
2 0
14
0 L. -1
1 2 3 4 5 6 1 2 3 4 5 6
log10(N) log10(N)
Genz Corner Peak dimension=4 Genz Gaussian dimension=4
14 9 I I
13 —+— Adaptive
8 |_|—®Simplicial 1
12 —&—Product 7,7/
1 2 1jme-Qme
—*—MC /
10
9 61
g 8- +Af1aptiv.e g N
§ ; —=— Simplicial é
P —&— Product P
S 6 ——-QMC D 47
o / —*—MC a
5 4
,’/ 34
4 ”
| W .|
2 ~ b
L X 14
14
0 0
1 2 3 4 5 6 1 2 3 4 5 6
log10(N) log10(N)
Genz Continuous dimension=4 Genz Discontinuous dimension=4
6 6
—&— Adaptive —+— Adaptive
—=— Simplicial —=— Simplicial
5 | |—&— Product 5 || —&— Product
—8—QMC —-QMC
——MC —*MC

MRS

Digits correct
N
*
\
xi \,
Digits correct
N

iy
iy

o
Eos

1 1 e =
0 0
-1 -1
1 2 3 4 5 6 1 2 3 4 5 6
log10(N) log10(N)

Figure 6.4.2: Comparison of the different quadrature methods for dimension 4
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he = b

In order to reflect the higher difficulty of quadrature in high dimensions, we increased
the maximum number of function evaluations, so that now N = 100, 200, ..., 100 -
216 ~ 6.6 - 106.

The results are shown in figure 6.4.3 on the next page. We see that “QMC”
performs best for the Product Peak and Gaussian classes. For the non-smooth classes,
the sampling methods and “QMC” in particular win hands down. We see that for
high dimension, the “Adaptive” method loses accuracy in relation to the sampling
methods. For the Corner Peak and Oscillatory classes, it is still overall the best
method. Tt performs very well for the Oscillatory class, which also judging by the
previous results seems especially amenable to interpolation quadrature.

6.5 Dimension-adaptive vs. simplicial methods

From the results of the benchmark in figure 6.4.1 on page 72 we see that the
dimension-adaptive sparse grid method always performs better than the simplicial
non-adaptive method in terms of accuracy. In this section, we relate this observation
to the structure of the Genz functions and examine the implication for the index
set and index contributions. For each Genz class, we show a salient index grid as
produced by the visualization component of the algorithm (see section 5.5).

These grids are shown in figure 6.5.1 on page 77. We have chosen dimension 2
to create the results. The structure of the 2-dimensional sections through grids for
the higher dimensional representatives of each Genz class look similar, because a
2-dimensional sections in effect represents the grid of a 2-dimensional function due
to the tensor product nature of the sparse grid. In each case, we delineate the indices
selected by the adaptive method by a red line, and those chosen by the simplicial
method by a dashed line. Quadrature was performed for N = 300 evaluations with
the Patterson rule. To emphasize the difference between the methods, we have
not used the hybrid method here, and compared the fully adaptive “Estimate Min”
method to the simplicial sparse grid. We used the difficulties 8, 4, 4, 4, 4, 4.

As we can see in the graphs, there are two factors that contribute to the better
convergence of the adaptive method. The first is that the dimensions itself may be of
varying importance. In the case of the Genz functions, the difficulty of the dimension
i increases with the size of the parameter a; (compare section 6.2). Since these
parameters are chosen randomly, some will be larger than others. For the Oscillatory
and Product Peak functions, for example, the dimension in vertical direction is more
important, whereas for the Corner Peak function, the horizontal dimension has higher
contributions. The simplicial method is not able to take advantage of this fact, and
treats all dimensions equally. The second factor concerns the shape of the index
set. For the Product Peak class, the optimal index set is more square (convex) than
the simplicial triangle, whereas for the Continuous class, it is more hollowed out
(concave).
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Figure 6.4.3: Comparison of the different quadrature methods for dimension 16
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Oscillatory Product Peak

Gaussian Continuous Discontinuous

Figure 6.5.1: Typical index contributions for the Genz classes, calculated for d = 2.
The red line and dashed black line delimit the contributions selected by
the adaptive and the simplicial method for NV = 300 points, respectively

For the most case, the differences between the adaptive and the simplicial index
set appear small. However, the contributions of directly neighboring indices often
differ by an order of magnitude, so missing only a few important indices can result
in a large difference in accuracy, as evidenced by the graphs in the last section.

The picture for the Discontinuous function demonstrates nicely why the fully adap-
tive algorithm fails in this case. In the beginning, it encounters only contributions
of 0. When it finally hits upon a non-zero contribution, it expands along this path,
and never goes back to expand from the other indices with 0 contribution.

6.6 Error estimates

We conclude this chapter by examining the quality of the error estimate. In section
4.3, we had given two different estimation strategies, the contribution-based estimate
and the black box estimate. We evaluated both methods for d = 8 and the “Estimate
Min” hybrid algorithm with 0.5 simplicial ratio and the Patterson rule.

The results for the black box estimate are given in figure 6.6.1 on the following
page. This error estimate only becomes available for N > 10? (compare section 5.5),
so we start the abscissa there. The left graph shows the error reliability, that is, the
proportion of test functions for which the actual error was less or equal to the given
estimate, and the estimate was therefore valid. A value of 1 is optimal and means
that for all 100 test functions of this class, the given estimate was valid. The right
graph shows the error efficiency, that is, the ratio of the actual error to the error
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Figure 6.6.1: Black-box error estimate for the “Estimate Min” algorithm

estimate. For this ratio, we consider only those estimates that are valid. The reason
for this is that otherwise, invalid estimates would spuriously lead to a seemingly
better efficiency.

A value of r for the error efficiency means that the error was overestimated by the
factor % Note that while higher values for the error efficiency are better, we cannot
hope for an optimum of 1, as this would mean that we would know the ezact distance
to the correct result. In fact, if we assume that the error is distributed randomly
according to a Gaussian distribution with mean 0, and we require an error reliability
of at least 99%, the optimal efficiency we can hope for is about 0.3. Indeed, taking
a so that

N(0,1)([—a,a]) =0.99

for the normal distribution N(0,1), we have

L[l
—/ 2N (0, 1) (@) = 0.3015...
099 J_, a

as the average efficiency for the valid error estimates.

We see that with increasing N, the black box estimator becomes more reliable,
but also less efficient. Whereas there is always a trade off between reliability and
efficiency, we would like this trade off to be independent of N, which the algorithm
does not satisfy well.

This effect is even more pronounced for the contribution-based estimate, as seen
in figure 6.6.2 on the next page. Here, the error estimate is very reliable, but the
efficiency is extremely low. In the case of the “Estimate Geom” and “Estimate Max”
algorithms, this effect is even stronger, because the higher individual estimates for
the index contributions lead to a higher total error estimate (results not shown).

In both cases, the error estimator does not work well for the Discontinuous class,
which is not surprising considering that both error estimators were based on assump-
tions of a regular contribution structure and convergence.

Although none of the error estimators is fully satisfactory, the black box estima-
tor seems the better choice overall because of the extremely low efficiency of the
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Figure 6.6.2: Contribution-based error estimate for the “Estimate Min” algorithm

contribution-based estimator.

6.7 Conclusion

Based on the Genz test suite for d = 8, we identify the following combination of
parameters as the overall best choice:

e The hybrid algorithm 4.4.1 with the minimum estimator and a simplicial ratio
of 0.5

e The Patterson quadrature rule

e The black box error estimator

For the Genz test suite, this algorithm performs very well for the smooth functions.
In many cases, especially for the Oscillatory class, it gives results that are orders of
magnitude better than those available with the sampling methods. These benefits
are especially prominent for low and medium dimensions, and begin to diminish with
higher dimensions. On the other hand, because Monte Carlo and Quasi-Monte Carlo
have maximum convergence rates of % and 1 respectively, they will usually not suffice
if we need high accuracy for a given problem. In this case, it seems advisable to at
least try out the adaptive algorithm.

The adaptive hybrid algorithm always performs better than the non-adaptive sim-
plicial quadrature, and should therefore replace it for all applications where the
additional memory demands of the index management allow it.
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7 Path integrals for quantum
mechanics

7.1 Introduction

The central tenet of quantum mechanics is the Schroedinger equation[27], a partial
differential equation with values in C whose solutions represent possible wave func-
tions. In this chapter, we examine the simple case of a single particle with mass m
in one spatial dimension for a given time-independent potential V(x). In this case,
the Schroedinger equation for the wave function ¢(t,x) of the particle is given by

L0 h? 9

For numerical computation, the time ¢ is substituted by the negative imaginary time
T,1.e. t = —iT. Also, we choose units so that A = 1, and set m = 1. In this way, we
obtain the diffusion-type equation

1 92

0
_ET/J(%T) = —iwlb(wﬂ') + V(w)zp(m,T) (7.1.1)

The original solution ¢ is obtained by analytical continuation of ¢ into the complex
plane (corresponding to the original real time values).

Since this thesis deals with integration and not partial differential equations, we use
the Feynman-Kac formula [12, 22]. Given a specified initial condition (i.e. ¥(z,0) =
u(z)), the formula gives a solution of equation 7.1.1 by

vle.r) = [ul) e (— I v<ws>ds) 4P,(V)

where W on the probability measure P, is the Brownian motion starting in x at time
0 [19]. Of particular interest are the corresponding Green functions. Mathematically,
they can be represented by taking Brownian paths with fixed start and end points.
We use the notation P, ., to denote the measure for Brownian paths that start at
x at time 0 and end in y at time 7. We then have

K(z,y,7) = / exp <_ /O TV(WS)d5> APy, (W) (7.1.2)

In this notation, y — K(z,y,t) is the Green function for a given time ¢ and starting
point x. In physics, K is sometimes called the transfer matrix or transition matrix.
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7 Path integrals for quantum mechanics

The Brownian paths W in the equations above are infinite-dimensional objects.
To compute the elements K (x,y, 7) numerically, we use a discretized approximation
of equation 7.1.2. Let M be the number of time steps, and 73, = % - 7 the discrete
times. For W we define

7TM(I/V) = (WTO? s ’WTIVI)

to be the projection of the process W to its values at the times 79, ..., 7a. Approx-
imating the integral

/0 V(Wy)ds

by the trapezoidal sum
M
> waV (Wr)
i=0

with
T P
Wy = 2y fori 0_’ M
’ 7 otherwise

and using the transformation formula, we obtain

N[

M
K(z,y,7) ~ /U(SM) - exp (— ZwM,kV(§k)> d(mar) s Prry(§) (7.1.3)
k=0

Remark 7.1.1 It is of course also possible to use a different quadrature formula, for
example the Gauss-Legendre rule, to approzimate the integral fOT V(Ws)ds. However,
because the underlying Brownian motion is not differentiable, the same is generally
true for the integrand V (Wy), so we do not expect there to be any additional smooth-
ness to be exploited. We obtained preliminary results using interpolatory formulas,
which indeed did not show to any improvements in convergence.

7.2 The discretized measure

The measure

is a M-dimensional Gaussian measure given by

k
Eu(@) = B, (Wn) =2+ 3y — 2)

Covy (&, &m) = Covp, ., (Wr, ,Wr, ) = % <min(/<:,m) — —>

Gaussian measures of this kind can easily be constructed using the Brownian bridge
method [6]. The idea of the Brownian Bridge is to begin with fixed start and end
points, and then successively intercalate the remaining points. For any two points
& and & at times r < t, and for a time s with 7 < s < t, the intercalated point £, is
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7.3 The harmonic oscillator

constructed by

(t—s)&—i—(s—r)gt_i_ (t—s)(s—r).Z

t—r t—r 5

58:

for a random variable Z; obeying the normal distribution. In this way, for any M

we have a linear mapping
By : RM-1 o RMAH

that describes a construction of the measure v from independent Gaussian random
variables. We need M — 1 of these variables because the start {, = x and the end
&y = y of the Brownian bridge are fixed, leaving &1,...,&y—1 to be determined.
Altogether, we have

(Bar)sN(0,1)2M=1) —

where N(0,1) is the Gaussian normal distribution. The function Bjys can be imple-
mented on a computer so that the time used is of the order M. The Brownian bridge
construction thus offers a quick method to implement the desired measure v. It is
easiest to implement if M is a power of 2, i.e. M = 2F for k € N, because in this way
r+t
2

we can simply choose s = for the intercalation times. We will limit ourselves to

this case. Using the results above for equation 7.1.3 gives us the formula

K(z,y,7) ~ / u(éar) exp( szk> )N (0,1)2M 1 (¢)

We have now reduced the problem of calculating K (x,y,7) to an integral over the
measure N(0,1)®(M=1D " In the notation of section 2.4, we have p = N(0,1) and
d = M —1. This immediately suggests using the Gauss-Hermite rule for quadrature.
Alternatively, we can use the cumulative distribution function

Fno,1(z) == N(0,1)(] — o0, z])
to generate the measure N(0,1) from A!([0, 1]), using the fact that
(Fno1))*AM([0,1]) = N(0,1)
In summary, we can calculate the integral 7.1.3 as a (M — 1)-dimensional integral,

using either the measure N (0, 1) or the measure A!([0, 1]) by applying the appropriate
transformation.

7.3 The harmonic oscillator

The harmonic oscillator is a classical problem in quantum mechanics, and we have
chosen it as an example to explore adaptive sparse grid integration for path integrals.
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7 Path integrals for quantum mechanics
The harmonic oscillator is given by the potential
2
w
V(z)= 7.%'2

where w is the oscillation frequency.

Of particular interest is the fact that analytical solutions are known for the Schroe-
dinger equation itself as well as for the discretized problem, allowing comparisons
against the true value and the exact time-discrete value. The analytical result for
the Green function is

w

27 sinh(wr) " €xp <—m ((2* + y?) cosh(wr) — 2xy)>

We obtained the result of the discretized integral 7.1.3 by writing the measure v as

a weight on AM~1(RM~1), This leads to the Gauss-type integral
mM &
(ﬁ) / / exp( ——Zka§k exp( . Z —&1)?)dér - v
o - k=0 k=1
(7.3.1)

with £y = z and &y = y. By induction over M, we obtain a recursion formula

K(z,y,7) =

M

S

that can be used to quickly calculate the correct value (see the code for details [25]).
Alternatively, we can write the integral 7.3.1 in the form

/.../efTAfdgl...gM_l

with a symmetrical matrix A € M(n + 1,7+ 1), and solve the integral by diagonal-
ization of the matrix.

We have evaluated the terms K(z,y, ) for the times 7 = 0.1, 7 = 1 and 7 = 10.
We used M = 128 time steps, because a plot of the correct discrete vs. continuous
results suggested that for this number of time steps, we have a good trade off between
the size of the discretization error and number of dimensions. Of course, for real
problems we do not have analytical results to work with, and a suitable number of
time steps must be determined from experience and by trial and error.

For each choice of 7, the average number of correct digits for 25 runs was computed.
For each run, the parameters x and y were chosen with uniform probability from the
interval [—1, 1]. The results of quadrature were compared to the value of the discrete
integral 7.1.3 and to the correct value of the stochastic integral 7.1.2. The results
are shown in figure 7.3.1 on the facing page.

We see that the discrete interval is solved best by the adaptive algorithm for
7 =0.1 and 7 = 1, but better by the sampling methods for 7 = 10. For 7 = 0.1 and
7 = 1, the Gauss-Hermite rule performs noticeably better than the Patterson rule.
We conjecture that the transformation from distribution A'([0,1]) to N(0, 1) via the
function Fy (1) makes the function less smooth and therefore slows down conver-
gence. The Gauss-Hermite rules are naturally adapted to the Gaussian distribution,
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Figure 7.3.1: Quadrature results for the Green function K(x,y,t) vs. the correct dis-
crete (left) and continuous (right) results for the harmonic oscillator
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Figure 7.3.2: Error reliability and efficiency for the Adaptive Hermite algorithm for
the harmonic oscillator vs. the correct discrete value

and better suited to the problem. The good performance of the Patterson rules for
7 = 1 between N = 10% and N = 10* is due to a pass through zero at this point,
that occurs independently of the start and end points z and y (results not shown).
We did not investigate this further.

In the right graphs, which plot the error against the continuous result, we see that
for 7 = 0.1, some of the additional accuracy of the adaptive algorithms is spurious,
and represents refinement past the error of discretization. Even with this taken into
account, the adaptive methods give far better results than the sampling methods.
The error of discretization does not come into play for the times 7 = 1 and 7 = 10.

The reliability and efficiency of the error estimator for quadrature against the
correct time-discrete value are shown in 7.3.2. We see that the estimator fails com-
pletely in this case. In many instances, the reliability was 0, so the efficiency rating
is not available. As we can see from the left graph for 7 = 0.1 in figure 7.3.1 on the
preceding page, convergence seems very erratic for this path integral problem. This
probably throws the black box estimator off course, since it depends on a steady
convergence rate. We show the estimator only for the runs performed against the
discrete value, as the algorithm has no mechanism for judging the result against the
continuous value.

7.4 The anharmonic oscillator

As a second example, we consider the anharmonic oscillator, given by

V(z) = %ngQ + Ma? — f2)?

We chose w =0, A =1 and f = % to obtain a two well potential with wells at
—% and % (see figure 7.4.1 on the next page). Because of this, it is considered to
be more difficult to solve computationally than the harmonic oscillator. Again we

calculate the Green function K(z,y,7) for  and y chosen uniformly from [—1,1]
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7 Path integrals for quantum mechanics

for the times 7 = 0.1, 7 = 1 and 7 = 10. Since no analytical solutions for the
anharmonic oscillator are known, we do not have any analytical reference values.
Instead, we determined preliminarily which algorithm works best for each time 7,
and approximated the true result by performing quadrature with 20 times as many
evaluations as the maximum used in the benchmark.

The results for the anharmonic oscillator are qualitatively similar to those for
harmonic oscillator. However, while the sampling methods attain about the same
accuracy as for the harmonic oscillator, the adaptive methods perform by more than
an order of magnitude.

The results for error estimation are similar to those for the harmonic oscillator,
and are not shown.

7.5 Conclusion

The adaptive sparse grid algorithm works well for calculating the green function
K(x,y,7) for the time 7 = 0.1, is a little better (harmonic oscillator) or a little
worse (anharmonic oscillator) for 7 = 1 and fails for 7 = 10 as compared to the
sampling methods. The Gauss-Hermite rule performs better than the Patterson
rule, because it is better suited to the Gaussian noise underlying the generation of
the path. The error estimator goes fully astray, and cannot be used for these path
integrals.

Compared to the simplicial sparse grid, the adaptive method benefits from the
fact that the Brownian bridge method introduces a hierarchy between the different
dimensions. Due to the method of construction by intercalation, the Gaussian ran-
dom variables used first influence the shape of the path to a greater degree. The
adaptive method can then refine specifically for these dimensions, which leads to an
overall better accuracy (compare [16, 6]).

While the results are encouraging for short times, many problems in quantum me-
chanics require the computation for long time intervals. Also, instead of a pure Monte
Carlo method, modified versions with importance sampling, like the Metropolis al-
gorithm [26] are employed, that improve performance considerably. Locally adaptive
refinement might yield similar gains for the adaptive sparse grid methods, but was
not considered in this thesis. Further investigation is needed to determine if and how
adaptive sparse grid quadrature can provide efficient solutions for quantum mechan-
ical questions and other problems from physics.
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8 Conclusion

Dimension-adaptive sparse grid quadrature offers an interesting approach to comput-
ing integrals of moderate and high dimensions. In contrast to the sampling methods,
which are the main quadrature methods used for high dimensional integrals today,
the sparse grid method is interpolatory and can therefore exploit high degrees of
smoothness of the integrands. Dimension-adaptive sparse grids improve the method
of sparse grids by taking into account the different importance of dimensions. This
difference may be a coincidental property of the function, as for the Genz test func-
tions. It may also arise from purposeful design, as for the Brownian Bridge [6]. For
the latter case, adaptive sparse grids constitute a good method for exploiting this
hierarchy, from which simplicial sparse grids cannot profit. This leads to an overall
better convergence [16].

In this thesis, we have introduced a new black box method of error estimation
and established theoretical results for contribution-based error estimation. Neither
of these methods works very well, however.

We have also examined several different methods of index refinement. All are
based on some sort of estimate of the size of additional index contributions. These
methods work well in finding an index set suited to the function. We have seen that
the different methods of estimation lead to very similar convergence, showing that
index selection by estimation is a robust process that does not depend greatly on the
details of the estimation strategy itself.

We have compared the performance of different quadrature rules for the sparse
grid method. The Patterson rule represents a good choice for many integrands.
However, for functions based on Gaussian noise, the Gauss-Hermite formulas seem
to be particularly well suited and perform better than the Patterson rule.

We have implemented the different strategies proposed in this thesis on the com-
puter in the object-oriented language Java. The implementation delivers on the goal
of a modular design, and allows for the effortless mixing and matching of different
strategies. As such, it presents a good base for further exploration of adaptive sparse
grid methods for quadrature.

Although theoretical results show that asymptotically, the sparse grid method
breaks the curse of dimensionality, the pre-asymptotic practice is more ambivalent,
as evidenced by the Genz benchmarks and the quantum mechanical path integrals.
Some types of integrands, notably the Genz Oscillatory function and the path inte-
grals for short times, yield a high convergence, and the adaptive sparse grid algorithm
then performs several orders of magnitude better than both simplicial sparse grids
and the sampling methods. For other integrands, and notably those with a low
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degree of smoothness, adaptive sparse grid quadrature does not perform well. As
expected from theory, Monte Carlo performs truly independently of dimension in
practice, whereas convergence for the sparse grid methods is noticeably slowed for
higher dimensions in the settings of the Genz benchmark.

The new hybrid method introduced in this thesis appears to be a suitable com-
bination of adaptive and simplicial sparse grids. It has the same convergence rate
in theory and the same robust behavior in practice as the non-adaptive sparse grid
method, but also incorporates the improvements of the adaptive method. Indeed,
for difficult functions, the hybrid method even shows synergistic effects between the
two approaches. With regard to these results, and to the fact that index selection by
estimation is a robust, the hybrid approach offers a good standard with no immediate
need for improvement.

Further research is required on classifying the types of problems for which adap-
tive sparse grids work well, and on how to employ the adaptive method to obtain
highly accurate results. In particular, for the path integral problem from quantum
mechanics, we see that adaptive sparse grids may be a good choice for short times.
Unfortunately, many problems in physics require the integration over large times,
for which the adaptive method is inferior to the established Monte Carlo and Quasi-
Monte Carlo approaches. Further exploration will be needed to determine whether
there is a niche in physics where adaptive sparse grids present an improvement over
traditional sampling methods.

Path integrals occur naturally in financial mathematics in the form of stock prices
and for other values. Since the Brownian Bridge construction allows for a hierarchy
between the dimensions from which the dimension-adaptive algorithm can benefit,
it will be worthwhile to examine the utility of the adaptive method for this domain.
First results [16] look encouraging.

No satisfactory solution has been found for the estimation of the quadrature error.
This is unfortunate and requires further effort, because a quadrature value by itself
without a qualified estimate of its accuracy holds only little value.
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