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1 Introdu
tion1.1 Multi-Dimensional Integrals of Real Fun
tionsIntegrals are a fundamental part of mathemati
s, with appli
ations in a wide rangeof s
ien
es. Among others, they feature prominently in physi
s, statisti
s, physi
al
hemistry and �nan
ial mathemati
s. The most important 
ase are integrals forfun
tions with a domain that lies within R
d for some dimension d, and with valuesin R. We shall 
over only these fun
tions in this thesis, but we note that the extensionto C-valued fun
tions requires only slight modi�
ations.Path integrals are a parti
ularly notable sour
e of high-dimensional integrationproblems. They play an important role in �nan
ial mathemati
s and in statisti
alme
hani
s. Path integrals also arise as an alternative and 
omplementary representa-tion of 
ertain partial di�erential equations. In parti
ular, these path integrals allowfor a simple representation of the Green fun
tion for the time evolution operator. Weexamine this relationship for the S
hroedinger equation in quantum me
hani
s. Pathintegrals are in�nite-dimensional by nature, and to approximate them numeri
ally,we need to perform a temporal dis
retization. Sin
e the error from dis
retization de-
reases with the number of time steps, we need high-dimensional integrals to obtaina

urate results.1.2 The Curse of DimensionalityThe following observation is of parti
ular relevan
e to this thesis. If we want tointegrate a fun
tion f in the interval [0, 1], we might go ahead by taking its value atequidistant points, and 
al
ulating the mean of the fun
tion values on these points.This means evaluating f at N points. If we naively try to s
ale up this method to

d dimensions, and similarly subdivide [0, 1]d equidistantly into d-dimensional hyper-
ubes, we �nd we need to evaluate f at Nd points. That is, the amount of workneeded to attain a given re�nement level 1
N and a 
orresponding level of a

ura
yin
reases with the exponent d, and qui
kly grows beyond the 
apa
ity of today's
omputers for high dimensions d.The �
urse of dimensionality� is the 
olorful moniker used to des
ribe this help-lessness in the fa
e of high dimensions. If we want to perform quadrature for high-dimensional fun
tions, we need to �nd some way to avoid the 
urse of dimensionality.The sampling methods Monte Carlo and Quasi Monte-Carlo a

omplish this feat.The 
onvergen
e of Monte Carlo quadrature is fully independent from the dimensionof the problem, avoiding the 
urse of dimensionality. In many 
ases, Quasi Monte-5



1 Introdu
tionCarlo quadrature is a good alternative to Monte Carlo. Although unlike Monte Carloit does su�er to some extent from the 
urse of dimensionality, it has a better 
on-vergen
e rate, whi
h may outweigh this de�
it in pra
ti
e. However, the respe
tive
onvergen
e rates of 1
2 for Monte Carlo and at most 1 for Quasi-Monte Carlo makethem ill-suited for problems that require high numeri
al a

ura
y.Classi
al interpolation quadrature exploits the higher degrees of smoothness o�eredby many fun
tions of interest and is able to attain mu
h higher 
onvergen
e rates. Ifit is s
aled up to higher dimension using a tensor produ
t approa
h, it does howeversu�er fully from the 
urse of dimensionality. The sparse grid method o�ers a way ofretaining the advantages of interpolation quadrature while mitigating the e�e
ts ofthe 
urse of dimensionality. In re
ent years, adaptive sparse grid methods [17, 16℄have been proposed in an e�ort to fully exploit the possibilities of the sparse gridmethod. Questions remain as to what strategies for adaptivity should be 
hosen.Also, the estimation of the error of quadrature is di�
ult for these methods, andrequires further investigation.1.3 ContributionsThis thesis represents an appli
ation of the method of dimension-adaptive sparsegrids [17℄ to the problem of quadrature. In parti
ular, it extends the work on a
orresponding algorithm proposed in [16℄. The major 
ontributions of the thesis areas follows.

• We suggest several di�erent strategies for dimension-adaptive re�nement basedon a theoreti
al analysis of optimal 
onvergen
e.
• We propose a hybrid strategy that 
ombines the advantages of both 
onven-tional non-adaptive sparse grid quadrature [15℄ and of adaptive sparse gridquadrature, and obtain theoreti
al results for its 
onvergen
e.
• We examine the problem of estimating the error of quadrature. We give theo-reti
al results for the method proposed in [16℄, and suggest a new alternativemethod.
• The di�erent strategies proposed in this thesis are implemented on the 
om-puter. The implementation is realized in an obje
t-oriented, modular fashionthat supports a mix-and-mat
h approa
h for the various strategies. The imple-mentation also in
ludes several tools for visualizing the pro
ess of integrationonline. We analyze the run time 
omplexity of the algorithm.
• Using the 
omputer implementation and the Genz test suite, we 
ompare theperforman
e of the di�erent re�nement strategies, error estimators and quadra-ture rules with ea
h other, and identify a set of parameters that performs welloverall for the examined test 
ases.6



1.4 Outline of the Thesis
• We 
ompare the performan
e of the algorithm with established methods formulti-dimensional quadrature for the Genz test suite.
• We 
onsider the problem of path integrals for two examples from quantumme
hani
s. We examine how the dimension-adaptive algorithm may be appliedin this 
ase, and 
ompare its performan
e to that of the established methods.Numeri
al mathemati
s is a �eld that some may des
ribe as la
king mathemati
alstringen
y. This thesis makes an e�ort to present all results in a pre
ise fashion,and to use modern mathemati
al stru
ture to give 
on
ise proofs. We have alsoavoided the terms �trivial�, �of 
ourse� and the big-O notation in proofs throughoutthis thesis, as we feel they may 
over up problems [10℄.1.4 Outline of the ThesisThe thesis starts o� in 
hapter 2 with a review of several established approa
hes formulti-dimensional quadrature. The sampling methods Monte Carlo and Quasi-MonteCarlo are 
ompared to the interpolation methods. We pla
e parti
ular emphasis onthe performan
e of the di�erent methods for high-dimensional problems. Chapter 3reviews the sparse grid method for numeri
al quadrature, and examines its adaptiveand non-adaptive versions. We also give some theoreti
al results for the 
onvergen
eof the non-adaptive version, and show in parti
ular that asymptoti
ally, non-adaptivesparse grid methods fully break the 
urse of dimensionality. For a
tual 
omputation,adaptive sparse grids may perform far better than non-adaptive methods. Theirsu

ess depends on the quality of the adaptation strategy. In 
hapter 4, we 
onsiderthe problem of adaptive re�nement, and the related problem of error estimation.The 
omputer implementation of the proposed algorithms, requisite data stru
turesand questions of run time 
omplexity are 
onsidered in 
hapter 5.In 
hapter 6, we 
ompare the di�erent strategies proposed in earlier 
hapters withea
h other using the Genz test suite. Of the strategies and parameters 
ompared,we identify the 
ombination with the best overall 
hara
teristi
s. We then 
omparethis algorithm with the established quadrature methods reviewed in 
hapter 2. In
hapter 7, we examine the path integral representation of the harmoni
 os
illator andthe anharmoni
 os
illator as examples of quantum me
hani
al problems. As in theprevious 
hapter, we 
ompare the performan
e of the adaptive sparse grid algorithmwith the other quadrature methods. The thesis 
loses in 
hapter 8 with a dis
ussionof the results obtained and of the questions and problems that remain.1.5 A
knowledgementsI would like to thank Prof. Mi
hael Griebel for sponsoring this thesis and Dr. ThomasGerstner for his many helpful suggestions in developing the algorithm and in prepar-ing this do
ument. I would also like to thank Jörg Zimmermann for the many7



1 Introdu
tioninsightful dis
ussions on mathemati
s in general that sustained me throughout thework on this thesis.
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2 Multi-Dimensional QuadratureMethodsThis 
hapter gives an overview on the major established methods for the quadratureof multi-dimensional fun
tions. Most of the results are standard material and maybe found in any textbook on quadrature, although for reasons of 
onsisten
y wehave given in them in the form of trivial generalizations to arbitrary measures. Wehave paid spe
ial attention to show not only the 
apa
ities but also the limits of thedi�erent methods, in asymptoti
 theory as well as in pre-asymptoti
 pra
ti
e. Atthe end of the 
hapter, we give a systemati
 
omparison between the methods.2.1 A Sket
h of HistoryThe modern theoreti
al foundation of integration theory dates ba
k to Riemann inthe 19th and Lebesgue in the early 20th 
entury, and allows for the integration oflarge 
lasses of fun
tions. The integral values of fun
tions of interest 
an often not beobtained analyti
ally, i.e. by evaluating elementary fun
tions. Instead, the integralvalues are approximated by numeri
al means (a pro
ess 
alled numeri
al quadrature,or simply quadrature1).The 
on
ept and �rst methods for numeri
al quadrature date ba
k to the an
ientGreeks. These approa
hes were geometri
al in nature and are today des
ribed as themethod of exhaustion (a prime example is Ar
himedes' approximation of π[1℄). Themethod of exhaustion works by approximating a 
omplex 2- or 3-dimensional shapeby polygons and polyhedrons, respe
tively, whi
h have a known area or volume.During the late 17th 
entury, the development of 
al
ulus by Leibniz and Newtonallowed for a wholly new approa
h to integrals. Their realization that di�erentiationtheory also allowed for the solution of integrals by reversing the pro
ess of derivationopened the new �eld of analyti
al integration. It allowed for the symboli
 integrationof many simple fun
tions by �nding their �anti-derivative�.This dis
overy qui
kly fed into approximative integration theory, and by the end1Several authors use the term �
ubature� for multi-dimensional numeri
al integration, and reservesthe term �quadrature� for univariate integrals. However, this hardly improves terminology, sin
ethe �
ubature� as opposed to �quadrature� would at best suggest integrating over a 2-dimensionaldomain to obtain a 3-dimensional (
ubi
) volume. Furthermore, in the 
ontext of measuretheory, integration is indeed a 2-dimensional pro
ess analogous to quadrature, sin
e the valueof the integral is obtained by multiplying the value of the fun
tion with the measure of the set(whi
h may not even have a dimension) on whi
h it has this value, thus (by abuse of abstra
tion)yielding a (2-dimensional) area. For these reasons, the term �quadrature� is used throughoutthe manus
ript to des
ribe the numeri
al approximation of integrals. 9



2 Multi-Dimensional Quadrature Methodsof the 17th 
entury 
al
ulus had been used to generalize the Greek approa
h fromgeometri
 obje
ts to general fun
tions. For this, a given integrand is approximatedby fun
tions whose integrals are well known analyti
ally (usually polynomials). Thisis known as quadrature by interpolation.It was not until the 20th 
entury that a wholly new 
lass of quadrature methods,the sampling methods, was developed. Of these, Monte Carlo integration is themost prominent. Sampling methods are based on pi
king random or at least highlydispersive series of points, and taking the arithmeti
 mean of the fun
tion valuesobtained at these points as result for the quadrature. Their properties are quitedi�erent from interpolation methods, as we shall see later.In re
ent de
ades, interest in numeri
al quadrature has surged, due mainly to theubiquity of powerful 
omputers that for the �rst time allow the 
omputation of manyquadrature values to high pre
ision. Indeed, the problem of the quadrature of one-dimensional fun
tions may be regarded as solved for the majority of fun
tions ofinterest. For fun
tions of higher dimensions, numeri
al quadrature still poses a huge
hallenge, and is an a
tive area of 
urrent resear
h. The reason that quadrature forhigher dimensions is so di�
ult is outlined in the next se
tion.2.2 De�nitions and notationsWe will use the following notation:
Ω denotes the domain of integration; often, we have Ω ⊂ R

d for some d
µ denotes the measure on Ω over whi
h the fun
tion is to be integrated;often, µ will be the d-dimensional Lebesgue-measure λd

‖µ‖ denotes the weight of the measure, i.e. ‖µ‖ := µ(Ω)

f denotes the integrand, with f ∈ L1(µ)

I(f) denotes the integral of f over the measure µ, that is I(f) :=
∫

Ω fdµ

QN (f) denotes the result of numeri
al quadrature for the fun
tion f after eval-uating f at N fun
tion points
ǫ(N) denotes the error of quadrature after evaluating N fun
tion points; it isde�ned as ǫ(N) = |QN (f) − I(f)|

ǫmax(N) denotes an upper bound for the error ǫ(N), as obtained from theoreti
alresults
ρ(N) denotes the 
onvergen
e rate obtained from theory, de�ned as ρ(N) :=

−N d
dN

ǫmax(N)

ǫmax(N) . This 
orresponds to the slope of ǫmax(N) in a bilogarith-mi
 plot. The minus sign in the de�nition make ρ(N) satisfy the intuitionthat higher 
onvergen
e rates are better. If lim
N→∞

ρ(N) exists, we 
all itthe asymptoti
 (logarithmi
) 
onvergen
e rate.10



2.2 De�nitions and notationsWe will now formalize what we mean by a quadrature method (quadrature algo-rithm) for a given domain Ω and a measure µ. We will only 
onsider the 
ase of�nite measures, i.e. we require ‖µ‖ < ∞. We also require ‖µ‖ > 0. This is neededfor some te
hni
al 
onsiderations, and the 
ase ‖µ‖ = 0 is uninteresting anyhow.De�nition 2.2.1 We say that QN is a deterministi
 quadrature method i�there exist fun
tions
pN,k : R

k−1 → Ω for k,N ∈ N, k ≤ Nand
rN : R

N → R for N ∈ Nso that
QN (f) = rN (f(xN,1), . . . , f(xN,N ))with
xN,k = pN,k (f(xN,1), . . . , f(xN,k−1))

pN,k is said to be the point generator, and rN the result generator.This de�nition formalizes the idea that for any given N only information gleanedfrom the fun
tion so far may be used to 
al
ulate the result and to de
ide whi
hpoint to evaluate next (
ompare [34℄). An example for this de�nition will be givenin the next se
tion.De�nition 2.2.2 We say that QN is a probabilisti
 quadrature method i� thereexist fun
tions pN,k and rN as above, but these fun
tions and QN itself are understoodto have an additional argument from a probability spa
e (S,S, P ). That is, we have
QN : S × L1(Ω) → R, pN,k : S × R

k−1 → Ω, rN : S × R
N → R. As is 
onvention inprobability theory, this argument is usually not expli
itly listed.The two properties given in the next de�nition will often be of use.De�nition 2.2.3 QN is 
alled positive semi-de�nite i� we have QN (f) ≥ 0 forall f ≥ 0. QN is 
alled linear i� QN is linear for all N (and for a probabilis-ti
 quadrature method for all probabilisti
 arguments s ∈ S), i.e. QN (λf + µg) =

λQN (f) + µQN (g) for all integrands f and g and all λ, µ ∈ R.Finally, we give several de�nitions relating quadrature to the integral.De�nition 2.2.4 A quadrature method QN is 
alled 
onsistent i� for all 
onstantfun
tions c · 1Ω, c ∈ R the equality
QN (c · 1Ω) = I(c · 1Ω) = c ‖µ‖holds. I� for a set G ⊂ L1(µ) and a spe
i�
 N we have

QN (g) = I(g) 11



2 Multi-Dimensional Quadrature Methodsfor all g ∈ G, we say that QN is exa
t for G. Finally, i� for a set G ⊂ L1(µ) wehave
lim

N→∞
QN (g) = I(g)for all g ∈ G we say that QN is limes-exa
t for G.We see that the 
onsisten
y of QN is simply a spe
ial 
ase of exa
tness for G =

{c · 1Ω : c ∈ R}. We will now examine the properties of the most 
ommon methodsfor multi-dimensional quadrature.2.3 Sampling Methods2.3.1 Monte Carlo quadratureNot all quadrature algorithms su�er from the 
urse of dimensionality en
ounteredby the primitive approa
h given in se
tion 1.2. Monte Carlo quadrature espe
ially istotally oblivious to dimension, and in fa
t any 
ontinuous stru
ture at all. Monte-Carlo quadrature is a probabilisti
 quadrature method de�ned by
QMC

N (f) :=
1

N
‖µ‖

N∑

i=1

f(Xi) (2.3.1)where the Xi are independent random variables with the distribution µ
‖µ‖ .Formalized a

ording to de�nition 2.2.2, QMC

N is given by the point generator pN,n :

(s, (yi)i=1,...,n−1) 7→ sn and the result generator rn : (s, (yi)i=1,...,n) 7→ ‖µ‖
N

∑n
i=1 yi.The probability spa
e (S,S, P ) is given by (ΩN,A⊗N,

(
µ

‖µ‖

)⊗N
), where A denotesthe σ-algebra on whi
h µ is de�ned. As 
an be seen from de�nition, Monte Carloquadrature is 
onsistent, positive semi-de�nite and linear.Sin
e the random variables Yi = f (Xi) are independent and have identi
al dis-tribution, by Etemadi's theorem[11℄ we have lim

N→∞
QMC

N (f) = E (‖µ‖ · f) = I(f)almost surely in P , that is, for any fun
tion f ∈ L1(µ) we know that QMC
N islimes-exa
t with probability 1. However, Etemadi's theorem does not give us anyinformation about the rate of 
onvergen
e.To make a statement about the rate of 
onvergen
e we need the additional 
ondi-tion that f ∈ L2(µ). An elementary result from probability theory is the following:Proposition 2.3.1 Let f ∈ L2(µ). For all η > 0, we have P {ǫ(N) ≥ 1√

N
c (η)

}

≤ ηwith c (η) = 1
η

√

‖µ‖ ‖f‖L2.Proof. Let f̃ = ‖µ‖ · f . Take η > 0. Using Chebyshev's inequality for theexponent 2, we have
P

{
∣
∣QMC

N (f) − I(f)
∣
∣ ≥ 1√

N
c (η)

}

≤ N
c(η)2

E
((
QMC

N (f) − I(f)
)2
)

12



2.3 Sampling MethodsBy de�nition of f̃ and QMC
N , it follows that

E
((
QMC

N (f) − I(f)
)2
)

= E





(

1

N

N∑

i=1

f̃ (Xi) − E
(

f̃
)
)2


 (2.3.2)Be
ause E ( 1
N

∑N
i=1 f̃ (Xi) − E

(

f̃
))

= 0, we obtain
E





(

1

N

N∑

i=1

f̃ (Xi) − E
(

f̃
)
)2


 = V

(

1

N

N∑

i=1

f̃ (Xi) − E
(

f̃
)
)

=

N∑

i=1

V

(
1

N
f̃ (Xi)

)using the equality of Bienaymé for the last step. Finally,
N∑

i=1

V

(
1

N
f̃ (Xi)

)

= N · V
(

1

N
f̃ (X1)

)

≤ 1

N
E
(

f̃ (X1)
2
)

=
1

N

∫

Ω
(‖µ‖ · f)2

1

‖µ‖dµ

=
1

N
‖µ‖ ‖f‖2

L2In 
on
lusion, we have E ((QMC
N (f) − I(f)

)2
)

≤ 1
N ‖µ‖ ‖f‖2

L2 . This 
ombined withequation 2.3.2 yields the desired result. �The proposition states that for any number η the error ǫ(N) is smaller than 1√
N
c(η)with probability 1 − η, giving us a 
onvergen
e rate of 1

2 in a statisti
al sense. Forexample taking η = 1
100 , we know that ǫ(N) ≤ 1√

N
· 100

√

‖µ‖ ‖f‖L2 with 99% prob-ability. We see further see from the proposition that c (η) and therefore the 
onstantof 
onvergen
e only depends on the L2 norm of f . This means that Monte Carloquadrature performs equally well whether the fun
tion is smooth, only 
ontinuous,or in fa
t only measurable.Due to the probabilisti
 nature of Monte Carlo quadrature, it is impossible to givea deterministi
 guarantee of 
onvergen
e even for very good-natured fun
tions.Proposition 2.3.2 Let Ω = [0, 1], µ = λ1 ([0, 1]). Then there exists f ∈ C∞(Ω) sothat for all N , P{∣∣QMC
N (f) − I(f)

∣
∣ ≥ 1

}
> 0.Proof. Take f (x) = 10x. We have I(f) = 5. Let AN =

{
Xi ≤ 1

5 ; i = 1, . . . ,N
}.We have

QMC
N (f) =

1

N

N∑

i=1

f (Xi) ≤ 10 · 1

5
= 2 13



2 Multi-Dimensional Quadrature Methodson AN , so that
{∣
∣QMC

N (f) − I(f)
∣
∣ ≥ 1

}
⊃ ANSin
e P (AN ) = 1

4N > 0, this proves the proposition. �On the other hand, also due to its probabilisti
 stru
ture, Monte Carlo quadraturehas the unique property mentioned above that we have almost sure 
onvergen
efor N → ∞. All deterministi
 quadrature methods need stronger requirements toguarantee 
onvergen
e. This is formulated in the following proposition.Proposition 2.3.3 If QN is a deterministi
 quadrature method for Ω = [0, 1] and
µ = λ1([0, 1]). Then there exists a fun
tion f ∈ L1(µ) so that QN (f) does not
onverge to ∫Ω fdµ.Proof. Take g = 0 
onstant. LetMN be the set of points used for the evaluationof QN (g). Let M =

⋃∞
i=1MN . Sin
e the MN are �nite it follows immediately that

M is 
ountable. Now let h = 1Ω\M be the indi
ator fun
tion for Ω\M . Sin
e M is
ountable, it is also Lebesgue-measurable and therefore h is a measurable fun
tion on
Ω. Sin
e QN is deterministi
, and therefore depends only on the results of fun
tionevaluations, we have QN (g) = QN (h) for all N , sin
e g and h are equal on all possiblepoints of evaluation M . Sin
e I(g) = 0 and I(h) = 1, at least one of the statements
lim

N→∞
QN (g) = I(g) and lim

N→∞
Q(h) = I(h) must be false. �2.3.2 Quasi-Monte Carlo quadratureQuasi-Monte Carlo quadrature presents a better alternative to Monte Carlo quadra-ture for many fun
tions. Instead of 
hoosing random points, the points are generateddeterministi
ally. We have

QQMC
N (f) :=

‖µ‖
N

N∑

i=1

f(xi) (2.3.3)where the xi are a deterministi
 sequen
e in Ω. Quasi-Monte Carlo quadrature is,just as Monte Carlo quadrature, 
onsistent, positive semi-de�nite and linear.For Ω = [0, 1]d and µ = λd(Ω), the 
onvergen
e rate for the Quasi-Monte Carlomethod is given by the inequality of Koksma-Hlawka[18℄:
ǫ(N) ≤ V (f)D∗

N (x1, . . . , xN )where V (f)is the bounded variation of f in the sense of Hardy and Krause[28℄, and
D∗

N (x1, . . . , xN ) is the star dis
repan
y of the family (x1, . . . , xN ) (also [28℄).Commonly, so-
alled low-dis
repan
y sequen
es are used for Quasi-Monte Carloquadrature. These sequen
es are de�ned by having a star dis
repan
y
D∗

N (x1, . . . , xN ) ≤ C (d)
(logN)d

N14



2.4 Interpolation Methodsfor some 
onstants C (d). The Halton sequen
e and the Sobol sequen
e are examplesof su
h sequen
es. For their 
onstru
tion, see [30℄.For su
h a low dis
repan
y sequen
e and an integrand with bounded variationin the sense of Hardy and Krause, we therefore obtain an error bound of ǫ(N) ≤
V (f)C (d) (log N)d

N . Cal
ulating the 
onvergen
e rate a

ording to the de�nition inse
tion 2.2, we obtain ρQMC(N) = 1 − d
log N . The asymptoti
 
onvergen
e rate is

limN→∞ ρQMC(N) = 1.2.4 Interpolation Methods2.4.1 General interpolationWe now turn to a wholly di�erent 
lass of quadrature methods, the interpolationmethods. Although (as noted in se
tion 2.1) histori
ally older, these methods aremore involved and harder to implement than the Quasi-Monte Carlo and MonteCarlo sampling methods. The general idea is to �nd a quadrature method QN thatis limes-exa
t for a 
ertain 
lass of fun
tions G ⊂ L1(Ω) (often the polynomials),whi
h is in some way dense within the set of fun
tions of interest. To formalize thisidea, the de�nition of a distan
e between a fun
tion and su
h a 
lass is helpful.De�nition 2.4.1 Let G ⊂ L1(Ω) be a set of fun
tions. We de�ne the distan
e of
f to G by dist (f,G) := inf

g∈G

‖f − g‖∞.Note that the distan
e may be in�nite. We now give a small lemma.Lemma 2.4.2 Let QN be linear and positive semi-de�nite. Then QN is monotonous,i.e. if f ≤ g then QN (f) ≤ QN (g). If additionally QN is 
onsistent, then in parti
-ular |QN (f)| ≤ ‖µ‖ · ‖f‖∞.Proof. We have QN (g−f) ≥ 0 be
ause QN is positive semi-de�nite. By linear-ity QN (g) ≥ QN (f) follows immediately. IfQN is 
onsistent, we have QN (1Ω) = ‖µ‖.Be
ause −‖f‖∞ · 1Ω ≤ f ≤ ‖f‖∞ · 1Ω , it follows that −‖µ‖ · ‖f‖∞ ≤ QN (f) ≤
‖µ‖ · ‖f‖∞. �In parti
ular, this leads to the following estimate.Lemma 2.4.3 For h ∈ L1(Ω), we have

|QN (h) − I(h)| ≤ 2 ‖µ‖ · ‖h‖∞Proof. We have
|QN (h) − I(h)| ≤ |QN (h)| + |I(h)|By lemma 2.4.2

|QN (h)| ≤ ‖µ‖ · ‖h‖∞ 15



2 Multi-Dimensional Quadrature Methodsand
|I(h)| ≤ ‖µ‖ · ‖h‖∞by similar properties of the integral. �These results allow us to immediately relate the distan
e of f to G to the error ofquadrature (see [4℄):Proposition 2.4.4 Let QN be linear, 
onsistent and positive semi-de�nite. Let QNbe exa
t on G. Then

ǫ(N) ≤ 2 ‖µ‖ · dist(f,G)Proof. For all g ∈ G, we have QN (g) − I(g) = 0 by de�nition. Be
ause QN islinear, this implies
ǫ(N) = |QN (f) − I(f)|

= |QN (f) − I(f) +QN (g) − I(g)|
= |QN (f − g) − I (f − g)|
≤ 2 ‖µ‖ · ‖f − g‖∞by the above lemma. Sin
e this is true for any g ∈ G, we have
ǫ(N) ≤ 2 ‖µ‖ · inf

g∈G

‖f − g‖∞

�We 
an extend this result to quadrature methods that are only limes-exa
t on G.Proposition 2.4.5 Let QN be linear, 
onsistent and positive semi-de�nite. Let QNbe limes-exa
t on G. Then
lim sup
N→∞

ǫ(N) ≤ 2 ‖µ‖ · dist(f,G)Proof. Let ǫ > 0. Let g ∈ G. Then
|QN (f) − I(f)| = |QN (f) −QN (g) − I(f) + I(g) +QN (g) − I(g)|

≤ |QN (f − g) − I (f − g)| + |QN (g) − I(g)|
≤ 2 ‖µ‖ · ‖f − g‖∞ + |QN (g) − I(g)|Sin
e

lim
N→∞

|QN (g) − I(g)| = 0this means
lim sup
N→∞

|QN (f) − I(f)| ≤ 2 ‖µ‖ · ‖f − g‖∞Sin
e g ∈ G was arbitrary, this proves the proposition. �16



2.4 Interpolation MethodsOur main result on quadrature by interpolation follows as 
orollary.Corollary 2.4.6 Let QN be linear, 
onsistent and positive semi-de�nite. Let QN belimes-exa
t for G. Then QN is limes-exa
t on G, where G denotes the 
losure of Gwith respe
t to the topology of uniform 
onvergen
e.Proof. We simply note that for f ∈ G we have dist(f,G) = 0 by de�nition. �2.4.2 One-dimensional quadrature on RIn this se
tion, we examine the important 
ase Ω ⊂ R. In this 
ase, be
ause theyare espe
ially amenable to analyti
al integration, Gis usually taken to be the set ofpolynomials. We denote the polynomials2 of order m or less by Pm, that is,
Pm := spanR

{
1, x, x2, . . . , xm

}and the set of all polynomials simply by P. For the following 
onsiderations, werequire that P ⊂ L1(µ). This is the 
ase for instan
e if Ω is bounded. From thisfollows that P ⊂ L2(µ), sin
e the squares of polynomials are themselves polynomials.This allows us to de�ne the standard L2(µ) bilinear form 〈f, g〉 :=
∫

Ω f · gdµ.We now pro
eed to �nd quadrature formulas that are limes-exa
t on the polyno-mials. We will examine formulas of the type
QN (f) =

N∑

i=1

wN,if(xN,i) (2.4.1)with wN,i ∈ R and xN,i ∈ Ω. Obviously, QN is linear. We note that QN is 
onsistenti�
N∑

i=1

wN,i = ‖µ‖ (2.4.2)and that the 
ondition
wN,i ≥ 0 (2.4.3)for all N and i = 1, . . . , N is su�
ient (but not always ne
essary) for QN to bepositive semi-de�nite.It is an elementary result that for any given set of abs
issas xN,1, . . . , xN,N , weights

wN,1, . . . , wN,N (
alled Newton-Cotes weights) 
an be 
hosen so that QN is exa
ton PN−1. These may be obtained for example by integrating the Lagrange basispolynomials [9℄.Remark 2.4.7 Any quadrature formula QN that is exa
t on P0 is automati
ally 
on-sistent be
ause P0 = {c · 1Ω : c ∈ R} (
ompare de�nition 2.2.4). It is not, however,2By abuse of notation, we do not distinguish the polynomials per se as elements of R
⊗N from theirin
arnation as elements of map (Ω, R). 17



2 Multi-Dimensional Quadrature Methodsne
essarily positive semi-de�nite, so if we need this property, we have to establish itfor the given measure and nodes.For the Newton-Cotes weights, the abs
issas xN,i 
ould be 
hosen arbitrarily (as longas no two are the same). This gives us a quadrature formula that is exa
t on PN−1.For so-
alled Gauss formulas, spe
ial points (the nodes of orthogonal polynomials)are 
hosen as the abs
issas, leading to formulas that are exa
t P2N−1 [9℄. Gaussformulas do not always exist. However, it 
an be shown that if the bilinear 〈., .〉 formis positive de�nite on P and if Ω is an interval, then for ea
h N we have a positivesemi-de�nite Gauss formula QN .Remark 2.4.8 Gauss formulas exist and are well-known for many important 
ases:
Ω = [−1, 1] , µ = λ1 ([−1, 1]) Gauss-Legendre rules
Ω = [−1, 1] , µ = 1√

1−x2
λ1 ([−1, 1]) Gauss-Chebyshev rules

Ω = [0,∞[, µ = e−xλ1 ([0,∞[) Gauss-Laguerre rules
Ω =] −∞,∞[, µ = 1√

π
e−x2

λ1 (] −∞,∞[) Gauss-Hermite rulesAll these formulas are linear, 
onsistent and positive semi-de�nite.If we have a quadrature method QN that is exa
t for in
reasing polynomial degreeswith N , this in parti
ular implies that QN is limes-exa
t for P. This gives us animportant result on 
onvergen
e.Proposition 2.4.9 Let QN be linear, 
onsistent and positive semi-de�nite. If QN islimes-exa
t for P and Ω is 
ompa
t, then QN is limes-exa
t for C0(Ω), where C0(Ω)denotes the 
ontinuous fun
tions on Ω.Proof. This follows immediately form the theorem of Stone-Weierstrass[13℄ andfrom proposition 2.4.6. �This result answers the question of 
onvergen
e only for 
ompa
t Ω. However, manyfun
tions of interest are not de�ned on a 
ompa
t domain, for example be
ausethey have a singularity. Empiri
ally, we observe that the method of quadratureby polynomial interpolation given in this 
hapter still works quite well in many
ases. Unfortunately, the theory of 
onvergen
e for quadrature on non-
ompa
tdomains is far less developed than that for 
ompa
t domains and 
losed intervalsin parti
ular, so that we have only a few results for small and poorly 
hara
terizedfun
tions spa
es. For Gauss-Hermite quadrature, for example, we obtain 
onvergen
eif all derivatives have a 
ommon bound (
ompare [9℄). Given the good 
onvergen
e18



2.4 Interpolation Methodsattained on non-
ompa
t domains in pra
ti
e, this gulf between pra
ti
e and theoryis quite unsatisfa
tory.2.4.3 Convergen
e results for Ω = [0, 1], µ = λ1 ([0, 1]) and C∞ ([0, 1])We now give results for a 
ase for whi
h detailed analysis does exist, and whi
hnonetheless en
ompasses many important problems. Spe
i�
ally, we take Ω = [0, 1]and µ = λ1 ([0, 1]), and an integrand f ∈ C∞ ([0, 1]). For this se
tion, we assumethat QN is exa
t on PN−1 (quadrature methods of this kind are sometimes 
alledinterpolatory).For the base point x0 = 1
2 , the Taylor interpolation polynomial is
p (x) =

M∑

k=0

∂kf
(

1
2

)

k!

(

x− 1

2

)kThis means that we have
f (x) = p (x) +

∂M+1f (τ)

(M + 1)!

(

x− 1

2

)M+1for some τ ∈ [0, 1]. Be
ause p ∈ PM , this impliesdist (f,PM) ≤ ‖f − p‖∞ ≤ 1

2M+1 (M + 1)!

∥
∥∂M+1f

∥
∥
∞ (2.4.4)Sin
e QN is exa
t on PN−1, we 
an now use proposition 2.4.4 to obtain the estimate

ǫ(N) ≤ 2

2NN !

∥
∥∂Nf

∥
∥
∞Unfortunately, this generally allows no predi
tion about how fast ǫ(N) 
onverges to 0with in
reasing N , be
ause ∥∥∂Nf

∥
∥
∞ 
an in
rease rapidly with N . Indeed, if f is notanalyti
al in [0, 1], we know the remainder term of the Taylor series does not 
onvergeto 0. To give estimates of 
onvergen
e for general fun
tions f ∈ C∞ ([0, 1]), we needa di�erent approa
h. Here the theory of approximation with algebrai
 polynomials
omes into play [4℄. Indeed, from approximation theory we have the estimatedist (f,PM ) ≤ π

2r+1 (M − r + 2) · · · (M + 1)
‖∂rf‖∞for a �xed r ≥ 1 and M ≥ r − 1 for any f ∈ Cr ([0, 1]) [32℄. Sin
e

lim
M→∞

(M + 1)r

(M − r + 2) · · · (M + 1)
= 1this means we have 
onstants cr <∞ withdist (f,PM ) ≤ cr

2
(M + 1)−r ‖∂rf‖∞ 19



2 Multi-Dimensional Quadrature MethodsNow we 
an again use proposition 2.4.4 to obtain
ǫ(N) ≤ 2 ‖µ‖ · dist (f,PN−1) ≤ crN

−r ‖∂rf‖∞for M ≥ r − 1.This gives us a 
onvergen
e rate of ρ(N) = r for N ≥ r. For our fun
tion f ∈
C∞ ([0, 1]), this means that we a
tually have an asymptoti
 
onvergen
e rate ofin�nity. While this sounds rather tantalizing, we must always remember that the
al
ulations our 
omputers are able to perform stop far short of in�nity (we willreturn to this point in se
tion 2.7). For �nite N , we have the estimate

ǫ(N) ≤ min
r=1,...,N

crM
−r ‖∂rf‖∞Ea
h one of the terms crM−r ‖∂rf‖∞ will eventually overtake all previous terms

csM
−s ‖∂sf‖∞, s < r and be
ome the dominant term for the minimum. When thistransition happens depends on the size of cr ‖∂rf‖∞. In pra
ti
e therefore we doexpe
t the observed 
onvergen
e rate to a
tually speed up with in
reasing N , buthow slowly or qui
kly this speed-up o

urs is strongly dependent on the fun
tion fand its derivatives.Remark 2.4.10 The 
onstants given in the estimates for dist (f,PM ) above 
an bedrasti
ally improved with additional results (for example [3℄). However, the qualita-tive nature of the results remains the same.Remark 2.4.11 We have examined only fun
tions of the 
lass C∞ ([0, 1]). As we
an see from the results above, we in fa
t have ǫ(N) ≤ crM

−r ‖∂rf‖∞ for any f ∈
Cr ([0, 1]).2.4.4 The tensor produ
tWe now need to �nd a way to translate our one-dimensional interpolation quadratureformulas to the multi-dimensional 
ase. The natural approa
h is to use some sort oftensor produ
t of our one-dimensional operators. The history of the tensor produ
tis 
omplex, and it has been notoriously di�
ult to formalize. The formalizationfound in the 
ontext of algebra and 
ategory theory[20, 24℄ is mathemati
ally exa
t,but is usually insu�
ient for analyti
al questions. This is due to the fa
t that forthe algebrai
 tensor produ
t, all tensors are �nite sums of de
omposable elements
a ⊗ b. However, to give an example, in general a 
ontinuous fun
tion f ∈ C

(
Ω2
)
annot be written as a sum f (x, y) =

∑n
i=1 gi (x)hi (y) with gi, hi ∈ C(Ω). Toover
ome this limitation, some sort of 
ompletion pro
ess has to be performed, with
areful thought to the proper norm for 
ompletion. For operators (like the QN ), thesituation be
omes even more di�
ult, sin
e we need to �nd 
onditions to make surethe operators 
an be properly extended onto the 
ompleted spa
e. An overview ofthe required mathemati
s is given for example in [23℄.20



2.4 Interpolation MethodsSin
e none of these di�
ult 
on
epts are a
tually needed for this thesis, we willsidestep the problem by de�ning the tensor produ
t only for a very limited spa
e ofoperators, whi
h, however, is su�
ient for our further 
onsiderations. Indeed, whenwe use the tensor produ
t during this thesis, we always mean the tensor produ
t ofve
tor spa
es from algebra.De�nition 2.4.12 We de�ne the Dira
 form δx for x ∈ Ω by δx(f) = f (x). Wede�ne the spa
e of Dira
 sums DΩ by DΩ := spanR {δx : x ∈ Ω}.This 
lass D 
orresponds exa
tly to the 
lass of quadrature formulas used in thisse
tion, as given in equation 2.4.1. We now take the d-fold algebrai
 tensor produ
tof DΩ with itself:
D⊗d

Ω := DΩ ⊗ . . .⊗DΩ
︸ ︷︷ ︸

d timesWe de�ne a multi-linear mapping
E : (DΩ)d → DΩdby de�ning it on the basis elements of DΩ by

E (δx1
, . . . , δxd

) = δ(x1,...,xd)By the universal property of the tensor produ
t, this gives us a linear isomorphismof D⊗d
Ω into DΩd , so that we 
an naturally take DΩd as the tensor produ
t D⊗d

Ω .2.4.5 Multi-Dimensional quadratureWe 
an now translate the results from se
tion 2.4.2 to the multi-dimensional 
ase bytaking the Dira
 formula Q⊗d
N , yielding a quadrature formula for µ⊗d on Ωd. Writtenexpli
itly by expanding the terms and using the multi-linearity of Q⊗d

N , we have
Q⊗d

N (f) =

N∑

i1=1

. . .

N∑

id=1

wN,i1 · · ·wN,idf (xN,i1 , . . . , xN,id)

Q⊗d
N is linear, and it inherits the 
hara
teristi
s of QN : It is 
onsistent if QN is
onsistent, and positive semi-de�nite if QN is positive semi-de�nite.Proposition 2.4.13 If QN is 
onsistent, then Q⊗d

N is 
onsistent.Proof. Q⊗d
N (c · 1Ωd) =

∑N
i1=1 . . .

∑N
id=1wN,i1 · · ·wN,idc = c

(
∑N

i=1wN,i

)d
=

c · ‖µ‖d. �Proposition 2.4.14 If QN is positive semi-de�nite, then Q⊗d
N is positive semi-de�nite. 21



2 Multi-Dimensional Quadrature MethodsProof. We will �rst examine the 
ase of d = 2. Let f ≥ 0 and g (x) =

QN (f (x, .)). Be
ause f (x, .) ≥ 0 for all x and be
ause QN is positive semi-de�nite,we obtain g (x) ≥ 0. Be
ause QN ⊗ QN (f) = QN (g), we obtain QN ⊗ QN (f) ≥ 0,whi
h proves the proposition for d = 2. We 
an extend this proof to higher dimen-sions by iteration. �In analogy to the last se
tion, let Pd
M denote the d-dimensional polynomials of atmost maximum degree M , i.e.

Pd
M := spanR

{
1, x1, . . . xd, . . . , x

M
1 , . . . , x

M
d

}and let Pd =
⋃

M

Pd
M denote all d-dimensional polynomials.We 
an now transfer the results about polynomial exa
tness from the last se
tionto the multi-dimensional 
ase. First, we prove a more general proposition.Proposition 2.4.15 If QN is exa
t on G, then Q⊗d

N is exa
t on G⊗d.Proof. Let h (x1, . . . , xd) = g1 (x1) · · · gd (xd), gi ∈ G be a de
omposable ele-ment of G. We have
Q⊗d

N (h) =

N∑

i1=1

. . .

N∑

id=1

wN,i1 · · ·wN,idh (xN,i1 , . . . , xN,id)

=
N∑

i1=1

. . .
N∑

id=1

wN,i1 · · ·wN,idg1 (xN,i1) · · · gd (xN,id)

=
N∑

i1=1

wN,i1g1 (xN,i1) . . .
N∑

id=1

wN,idgd (xN,id)

= QN (g1) · · ·QN (gd) =

∫

Ω
g1dµ · · ·

∫

Ω
gddµ

=

∫

Ωd

g1 (x1) · · · gd (xd) dµ
⊗d (x1, . . . , xd)

=

∫

Ωd

hdµ⊗dSin
e any element of G⊗d 
an be written as �nite sum of de
omposable elements, theproposition follows from the linearity of Q⊗d
N and ∫Ω dµ. �Corollary 2.4.16 If QN is exa
t on PM , then Q⊗d

N is exa
t on Pd
M .Proof. This follows immediately by noting that Pd

M = (PM )⊗d. �In analogy to the last se
tion, we therefore know that if QN is exa
t for in
reasingpolynomial degrees with larger N , then Q⊗d
N is limes-exa
t on Pd. Therefore, inanalogy to proposition 2.4.9, we know that Q⊗d

N is limes-exa
t on C (Ωd
) if Ω (andtherefore Ωd) is 
ompa
t.22



2.5 Nested quadratureIn this way, we have found a very straightforward approa
h to s
aling up ourquadrature formulas to higher dimensions. The bad news is that this approa
h su�ersfrom the 
urse of dimensionality (see se
tion 1.2). Cal
ulating Q⊗d
N (f) requires Ndfun
tion evaluations, making numeri
al evaluation impossible for larger N in highdimensions. We will return to this problem and an approa
h for its mitigation in thenext 
hapter.2.4.6 Convergen
e results for Ω = [0, 1]d and µ = λd

(
[0, 1]d

)In analogy to se
tion 2.4.3, we now give estimates for 
onvergen
e for fun
tions on themulti-dimensional 
ube [0, 1]d with µ = λd
(
[0, 1]d

). We take a fun
tion f ∈ Cd(Ω)and a quadrature formula QN that is exa
t on PN−1. We introdu
e the norm
‖f‖Cr := max

i1=0,...r
. . . max

id=0,...r
max
x∈Ω

∣
∣
∣
∣
∣

(
∂

∂x1

)i1

· · ·
(

∂

∂xd

)id

f

∣
∣
∣
∣
∣It 
an be shown that ǫ(N) ≤ cd,rN

− r
d ‖f‖Cr for some 
onstants cd,r and for N ≥ rd,with the 
orresponding 
onvergen
e rate of r

d [8℄. Important for our 
onsiderationsis the fa
t if we have a one-dimensional 
onvergen
e rate of s, then the multi-dimensional 
onvergen
e rate 
an, due to the 
urse of dimensionality, be only asgood as s
d . Indeed, for a one-dimensional fun
tion g ∈ L1

(
λ1 ([0, 1])

), we only needtake f ∈ L1
(
λd
(
[0, 1]d

)) with f (x) = g (x1). We then have
Q⊗d

N (f) = QN (g) ·QN (1Ω) · · ·QN (1Ω) = QN (g)be
ause QN is exa
t on 1Ω. Therefore, we attain exa
tly the same 
onvergen
e as wedid in the one-dimensional 
ase, however using Nd points for 
al
ulating Q⊗d
N insteadof only N points for QN . In the bilogarithmi
 plot of ǫ(N) over N , the abs
issa istherefore stret
hed by the fa
tor d, turning a 
onvergen
e rate of s into only s

d . Forthis fun
tion, we are in e�e
t wasting many evaluations N for the dimensions 2 to dwhere nothing is going on.2.5 Nested quadratureSo far, we have not given 
onsideration to the spe
i�
 nature of the points where thefun
tion is evaluated. Of spe
ial interest is the question whether the points used to
al
ulate QN (f) are reused for higher values of N . The de�nitions 2.2.1 and 2.2.2allow for both possibilities, be
ause the point generator pN,i depends expli
itly on
N . This means that the points of evaluation may be di�erent for every N . However,not all quadrature formulas make use of this freedom. For both Monte Carlo andQuasi-Monte Carlo, the points sequen
e is independent of N . This is in 
ontrast tothe quadrature formulas of se
tion 2.4.2, where the nodes for the Gaussian formulasgenerally 
hange 
ompletely with every N . We 
all formulas of the �rst kind nested,be
ause new points are always added to (nested within) the old points. 23



2 Multi-Dimensional Quadrature MethodsThis di�eren
e is important for open-ended (online) integration, where the valueof N is not predetermined, but is 
ontinually in
reased until some sort of 
onditionis met. In this 
ase, nested quadrature formulas have the advantage that we onlyhave one new fun
tion evaluation when going from QN to QN+1, whereas in thegeneral 
ase we would need to evaluate the fun
tion N + 1 times. For example, weuse open-ended integration if we want to obtain a quadrature value for a given errorthreshold. In this 
ase, we in
rease N until the integration error (as estimated bysome part of our algorithm) falls below the given threshold.At �rst glan
e, it would seem that nested quadrature formulas have a large advan-tage in this 
ase, be
ause the number of fun
tion evaluations for Q1, . . . , QN is N .In the 
ase of a quadrature formula that is not nested, we have instead 1
2N (N + 1),so that the evaluation 
omplexity is of the order N2instead of N . With a di�erentstrategy, we 
an however redu
e this di�eren
e in degree to only a di�eren
e in 
on-stants. We a
hieve this by not evaluating QN for every N , but instead using theseries Ni = 2i, i = 0, 1, . . . If M is the minimum number of evaluations for whi
hthe 
ondition is ful�lled, we have Ni ≥ M for some minimal r. For this r, we have

Nr ≤ 2M . The total number of evaluations is then
r∑

i=0

Ni =

r∑

i=0

2i ≤ 2r+1 = 2Nr ≤ 4MThus for a non-nested formula, we need at most 4 times as many evaluations to rea
ha given 
ondition. Thus, the di�eren
e between nested and non-nested quadratureboils down to a di�eren
e in 
onstants. This espe
ially entails that the 
onvergen
erate for open-ended integration is always the same as for predetermined N , irrespe
-tive of whether QN is nested or not nested.Remark 2.5.1 Cal
ulation shows that the same qualitative result is obtained for
Ni = 
eil (bi) for some b > 1, where 
eil (x) := min {n ∈ N : n ≥ x} is the smallestinteger at least as large as x, albeit with a di�erent 
onstant. We 
al
ulate theasymptoti
 
onstant c (b) using the notation from above

c (b) = lim sup
M→∞

∑r(M)
i=0 Ni

M

= lim sup
M→∞

1

M

br(M)+1 − 1

b− 1

= lim sup
M→∞

1

M

b · br(M) − 1

b− 1

= lim sup
M→∞

1

M

b · bM − 1

b− 1

=
b2

b− 1

c (b) has a minimum of 4 at b = 2 in the interval ]1,∞[, showing that our 
hoi
e of24



2.6 Comparisonsbase 2 is optimal.2.6 ComparisonsIn summary, we have the following results from the last se
tion on the quadraturemethods and their 
onvergen
e.Quadraturemethod Fun
tion 
lass Error bound Asymptoti

onvergen
erateMonte Carlo L1(Ω) ǫ(N) ≤ 100√
N

√

‖µ‖ ‖f‖L2with at least probability0.99 1
2 (in astatisti
alsense)Quasi-MonteCarlo Fun
tion on [0, 1]dwith boundedvariation ǫ(N) ≤ V (f)C (d) (log N)d

N 1Polynomialinterpola-tion Cr
(

[0, 1]d
)

ǫ(N) ≤ crN
−r ‖∂rf‖∞ for

N ≥ r

rTensorprodu
tpolynomialinterpola-tion Cr
(

[0, 1]d
)

ǫ(N) ≤ cd,rN
− r

d ‖f‖Cr for
N ≥ rd

r
d

We see that the smaller the fun
tion 
lass for the quadrature (from top to bottom),the better the 
onvergen
e rate is. This is not surprising: The higher the degree ofsmoothness, the less errati
ally the fun
tion 
an behave, and the quadrature methods
an take advantage of this information.Monte Carlo quadrature 
an be used for any fun
tion in L1(Ω), and does not makeuse of any di�erentiable or even 
ontinuous stru
ture at all, working just as well for
R as for R

1000 or indeed any measure, whether it even has a dimension or not. Onthe other hand, it is also unable to take advantage of the smoothness o�ered by manyof the problems of interest, always having the same statisti
al 
onvergen
e rate of 1
2 .This means that for ea
h further de
imal digit of the integral we want to obtain, weneed to evaluate 100 times as many points. For this reason, Monte Carlo quadratureis unsuitable for results that demand a high pre
ision.Quasi-Monte Carlo quadrature o�ers a good alternative to Monte Carlo for inte-gration on [0, 1]d for all but the most ill-natured fun
tions, but is not able to makeuse of the additional information o�ered by di�erentiable fun
tions. Also, the pre-asymptoti
 guaranteed 
onvergen
e rate may be far lower than the asymptoti
 rateof 1, as we will see in the next se
tion. 25



2 Multi-Dimensional Quadrature MethodsHigh degrees of smoothness are well exploited for 1-dimensional fun
tions by in-terpolation quadrature. While tensor produ
t interpolation quadrature also makesuse of higher smoothness, it does so to a mu
h lesser extent, having only a 
onver-gen
e rate of r
d . Even if, as is 
ommonly the 
ase, our fun
tion is of 
lass C∞(Ω),simply taking a very high r for a �xed dimension d to obtain a large 
onvergen
erate r

d is not an option, be
ause this 
onvergen
e rate only ki
ks in for N ≥ rd, againre�e
ting the 
urse of dimensionality.In the next 
hapter, we will see that sparse grid methods allow us to avoid the
urse of dimensionality for interpolation quadrature, signi�
antly improving uponthe 
onvergen
e for multi-dimensional interpolation methods.2.7 On the questionable signi�
an
e of asymptoti
behaviorWe 
on
lude this 
hapter by some remarks on the value of asymptoti
 analysis forpra
ti
al 
omputation, using the example of Quasi-Monte Carlo and Monte Carloquadrature. As we have seen above, Quasi-Monte Carlo is half an order betterthan Monte Carlo asymptoti
ally for fun
tions with bounded variation. However,this is not true pre-asymptoti
ally. Comparing the pre-asymptoti
 statisti
al rateof ρ(N) = 1
2 for Monte Carlo and the pre-asymptoti
 rate of ρ(N) = 1 − d

log N forQuasi-Monte Carlo, we see that we need N > e2d, or about N > 4.8 · 108 for d = 10,for Quasi-Monte Carlo to have a better rate than Monte Carlo. For d = 32, we have
N > 6.3 · 1027, pla
ing the turnaround point �rmly beyond the limits attainable bytoday's 
omputers.However, even these theoreti
al pre-asymptoti
 
onvergen
e rates may be quitemisleading in pra
ti
e, sin
e they give only upper bounds whi
h may be far toopessimisti
. Taking the moderate dimension of d = 10, we have ǫQMC

max (N) =

c1N
−1(logN)10 and ǫMC

max(N) = c2N
− 1

2 . For c1
c2

= 1, we obtain the graph for ǫQMC
max (N)
ǫMC
max(N)shown in �gure 2.7.1 (p. 27). If c1

c2
< 1 or c1

c2
> 1, the graph is shifted up or down,respe
tively.Let us examine how well this theoreti
al graph relates to pra
ti
e for the simpletest fun
tion f (x1, . . . , x10) = e−

∑
10

i=1
xi . The plot for the a
tual error quotientobtained for this fun
tion by numeri
al quadrature with a 
omputer algorithm forone run ea
h of Quasi-Monte Carlo and Monte Carlo 
an be seen in �gure 2.7.2, p.27. The same s
ale as for �gure 2.7.1 was used. This makes for easy 
omparisonof the two �gures. Moreover, the white spa
e to the right, for whi
h 
omputationalresults were not obtained due to run-time limitations, drasti
ally illustrates the limitsof numeri
al 
omputability 
ompared to theoreti
ally required large Ns.When 
omparing the two �gures, we see immediately that they are qualitativelydi�erent. Espe
ially, the a
tual 
onvergen
e rate of Quasi-Monte Carlo seems tobe better than that of Monte Carlo dire
tly from the start, instead of worse for

N < 4.8 · 108 as suggested by theory. Indeed, the relative advantage seems to be26
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2 Multi-Dimensional Quadrature Methods
lose to 1
2 , whi
h would only be expe
ted asymptoti
ally for very large N .In summary, these 
omparisons show that the upper bounds o�ered by theory maybe all but useless for pra
ti
al 
onsiderations, and need always to be taken with atleast several grains of salt.

28



3 Hierar
hies and the Method ofSparse GridsThis 
hapter forms the 
on
eptual 
ore of this work. We have seen in the last
hapter that we 
an obtain a multi-dimensional quadrature formula by 
ombiningone-dimensional formulas. While this method leads to 
orre
t results, it is also veryine�
ient, sin
e it su�ers from the 
urse of dimensionality. In 1963, Smolyak gave amethod to avoid the 
urse of dimensionality [33℄. This method has be
ome knownunder several di�erent names, in
luding �sparse grid method�, �Boolean method� and�dis
rete blending method�. In all these 
ase, the �blending� that is performed followsa �xed predetermined s
heme. This 
hapter departs from traditional approa
hes bybeginning with a generalized sparse grid method, whi
h by nature turns out to beadaptive[17℄. In this setting, the 
onventional predetermined sparse grid methods
an be seen to arise as a spe
ial 
ase. Spe
i�
ally, we apply this adaptive method ofsparse grids to the problem of quadrature. In this, we extend the dimension-adaptivesparse grid approa
h proposed in [16℄.We give the standard results for 
onvergen
e of non-adaptive sparse grid quadra-ture. We use a new approa
h for error estimation, whi
h allows for a rather simpleproof. This proof has the advantage that it is not limited to predetermined (simpli-
ial) index sets, but 
an also be used for adaptive algorithms.3.1 De�nitions and notationsWe will use the following notation:
N denotes the natural numbers in
luding 0

α, β, γ, . . . denote multi-indi
es, i.e. elements of N
d for some dimension d

αi denotes the i-th 
omponent of the multi-index α, where i = 1, . . . , d

|α|1 denotes the total length of the multi-index α, de�ned by |α| =
∑d

i=1 αi

|α|∞ denotes the maximum length of the multi-index α, de�ned by |α| =

max
i=1,...,d

αi

ei denotes the multi-index with a 1 at the i-th position and 0 otherwise, i.e.
(ei)j = δij 29



3 Hierar
hies and the Method of Sparse Grids
α ≤ β we de
lare a partial order on the multi-indi
es of a given dimension d byde�ning that α ≤ β i� αi ≤ βi for i = 1, . . . , d, i.e. we use 
omponentwise
omparison. If α ≤ β and α 6= β, we say1 that α is a prede
essor of β,and that β is a su

essor of α.Eval(A) denotes the number of fun
tion evaluations needed to 
ompute A(f) fora Dira
 sum A for any fun
tion f ; Eval is a measure of 
omputational
omplexity
Aα for a family of Dira
 sums (Ai)i∈N0

on Ω we de�ne the Dira
 sum Aα on
Ωd by Aα = Aα1

⊗ . . .⊗Aαd
(see se
tion 2.4.4 for the de�nition of Dira
sums and their tensor produ
t)3.2 The method of sparse gridsTo apply the method of sparse grids to numeri
al quadrature, we de�ne a re�ne-ment hierar
hy of Dira
 sums (Ul)l∈N

with Ul = QN(l), where the stri
tly in
reasingmapping N (l) 
orrelates the level l of the hierar
hy with the number of nodes ofthe quadrature formula QN . Often, N (l) will in
rease exponentially with l. Thisimmediately gives us a re�nement hierar
hy for the d-dimensional 
ase. We needsimply take (U⊗d
l

)

l∈N

.We de�ne the family (∆l) of Dira
 sums based on Ul by ∆0 := U0, ∆l := Ul −Ul−1for l ≥ 1. We thus have Ul =
∑l

i=0 ∆i. We now rewrite U⊗d
l in terms of ∆l. Bymulti-linearity of the tensor produ
t of Dira
 sums, we have

U⊗d
l =

(
l∑

i=0

∆i

)

⊗ . . .⊗
(

l∑

i=0

∆i

)

=
l∑

i1=0

. . .
l∑

id=0

∆i1 ⊗ . . . ⊗ ∆id

=
∑

|α|
∞
≤l

∆αwith the de�nition of ∆α given above. We thus have
U⊗d

l (f) =
∑

|α|
∞
≤l

∆α(f)If U⊗d
l is limes-exa
t on a set of fun
tions F, we have for f ∈ F

I(f) = lim
l→∞

U⊗d
l (f) (3.2.1)1While the notation α < β would of 
ourse be equivalent to α ≤ β and α 6= β with the partial ordergiven, we avoid this notation lest it be 
onfused with the 
omponentwise 
omparison αi < βifor i = 1, . . . , d.30



3.2 The method of sparse grids
= lim

l→∞

∑

|α|
∞
≤l

∆α(f)

=

∞∑

l=0

∑

|α|
∞

=l

∆α(f)We see that approximating I(f) by tensor produ
t formulas of the type U⊗d
l thus
orresponds to adding the terms ∆α(f) in order of in
reasing size of |α|∞.The 
entral insight on whi
h the method of sparse grids is based 
omes from thefa
t this ordering is not ne
essarily the best for ensuring qui
k 
onvergen
e to I(f).This is due to two 
omplementary 
onsiderations:

• The evaluation 
omplexity Eval (∆α(f)) is the produ
t of the 
omplexitiesof Eval (∆αi
), i = 1, . . . , d. It thus depends on all the 
omponents of α,not just on the maximum 
omponent. To give an example: If d = 10 andEval (∆i) = 2i, using |α|∞ means giving the multi-indi
es α = (2, 0, 0, . . . 0) and

β = (2, 2, . . . , 2) the same pre
eden
e for evaluation, even though Eval (∆α) =

4, whereas Eval (∆β) = 410 ≈ 106.
• The operator ∆α represents a mixture of re�nements in the di�erent dimen-sions. Again, it depends on all 
omponents of α, not just on the maximum
omponent.To maximize the rate of 
onvergen
e, we use the following general strategy:Algorithm 3.2.1 Let

rα :=
|∆α(f)|Eval (∆α(f))be the ratio of the 
ontribution for α and the number of fun
tion evaluations requiredto 
al
ulate the 
ontribution. Add the 
ontributions ∆α(f) in order of de
reasing rα.Note that this strategy involves a reordering of the indi
es. We will assume for themoment that this reordering is possible without 
hanging the limit. A su�
ient
riterion for this is the absolute 
onvergen
e of the series, whi
h holds for manyimportant 
ases, as we will show later.This strategy is optimal in redu
ing the integration error ǫ(N) with respe
t to Nif all 
ontributions are positive. It may not be optimal for 
ontributions of mixedsigns, as these 
an 
an
el ea
h other out to produ
e a smaller error term. We willmake no attempt to predi
t the sign of 
ontributions in this thesis, and thereforetake the given algorithm as optimal under these 
ir
umstan
es.Of 
ourse, we generally do not know the values of ∆α(f) without 
al
ulating them.The algorithm however would require us to know all the values in advan
e. Instead,we use heuristi
s to estimate the 
ontributions from previous 
al
ulations, mu
h asany adaptive algorithm does. We further assume that in general |∆α(f)| ≥ |∆β(f)|for α ≤ β, sin
e for α ≤ β the Dira
 sum ∆β represents a higher level of re�nement31



3 Hierar
hies and the Method of Sparse Gridsthan ∆α for all dimensions. Sin
e we generally have Eval (∆α) ≤ Eval (∆β) in this
ase, we expe
t that mostly rα ≥ rβ for α ≤ β. Sin
e we want to evaluate in orderof de
reasing rα, this leads to the stipulation that we do not evaluate ∆β(f) unlesswe have �rst evaluated ∆α(f) for all α ≤ β. This leads us to the following de�nition(
ompare [15℄).De�nition 3.2.2 We 
all a set of indi
es A ⊂ N
d valid i� for ea
h index in A, allprede
essors are also in A, i.e. i� ∀α ∈ A : ∀β ≤ α : β ∈ A. We say that an index αis valid (with respe
t to A) i� α /∈ A and A ∪ {α} is valid.We 
onsolidate our 
onsiderations in the following algorithm (
ompare [16℄). Thealgorithm is the one 
entral to this thesis, and the one on whi
h the 
omputerimplementation is based. The result of quadrature is stored in the variable s.Algorithm 3.2.3 Start with A := ∅, s := 0.Repeat until a spe
i�ed 
ondition is rea
hed:From the set of indi
es valid with respe
t to A, pi
k an index α with the highestestimate for rαSet A := A ∪ {α}Set s := s+ ∆α(f)End RepeatRemark 3.2.4 Note that the one-dimensional re�nement hierar
hy ∆l(g) representsa re�nement of the integral for the 
omplete fun
tion g : Ω → R. A

ordingly, ifa multi-index α has a 
omponent αi = l, this means that the 
ontribution ∆α(f)represents a re�nement level of l for the whole dimension i. This is in 
ontrast tothe possibility of lo
al re�nement, where a

ura
y is in
reased sele
tively for partsof the domain of integration [2℄, and whi
h we do not 
onsider in this thesis. Tomake the distin
tion to lo
ally adaptive quadrature 
lear, the term dimension-adaptivequadrature is used.Remark 3.2.5 The 
onstru
tion given in this 
hapter is not limited to quadratureformulas. Indeed, we 
an use sparse grid methods for any kind of multi-dimensionalobje
ts that 
an be de�ned as a tensor produ
t of one-dimensional obje
ts, and forwhi
h there exists a one-dimensional hierar
hy of re�nement. Some examples are�nite elements for partial di�erential equations or 
oe�
ient tensors for lossy data
ompression [17, 5℄.3.3 Estimates for ∆α(f) for Ω = [0, 1]d and µ = λd

(
[0, 1]d

)We take a positive semi-de�nite linear quadrature formula QN of Dira
 sums so that
QN is exa
t on PN−1 for ea
h N (for 
onstru
tion of su
h formulas, see se
tion 2.4.2).Note that be
ause 1Ω ∈ P0 and QN linear, QN is already 
onsistent. We use the32



3.3 Estimates for ∆α(f) for Ω = [0, 1]d and µ = λd
(
[0, 1]d

)hierar
hy Ul = QN(l) with N (l) = 2l. For a one-dimensional fun
tion g ∈ C∞ ([0, 1])and µ = λ1 ([0, 1]), we have
|∆0(g)| = |Q1(g)| ≤ ‖g‖∞ (3.3.1)and for l ≥ 1

|∆l(f)| ≤ |Q2l(f)| + |Q2l−1(f)| ≤ 2 ‖g‖∞ (3.3.2)Alternatively for l ≥ 1, we have
|∆l(f)| = |Ul (f − p) − Ul−1 (f − p)|for all p ∈ Pk with k := 2l−1 − 1, be
ause Ul and Ul−1 are exa
t for p. Re
alling thede�nition of dist (f,G) from se
tion 2.4.1, this gives us the estimate

|∆l(f)| ≤ inf
p∈Pk

(|Ul (f − p)| + |Ul−1 (f − p)|)

≤ inf
p∈Pk

(‖µ‖ · ‖f − p‖ + ‖µ‖ · ‖f − p‖)

= 2 · dist (f,Pk)In analogy to se
tion 2.4.3, this leads to the estimates
|∆l(f)| ≤ cr (k + 1)−r ‖∂rf‖∞ = cr2

−r(l−1) ‖∂rf‖∞for 2l−1 − 1 = k ≥ r − 1. With p = 2−r, we therefore have
|∆l(f)| ≤ cr2

rpl ‖∂rf‖∞for 2l ≥ r. For those l for whi
h 2l−1 < r, we 
an use equations 3.3.1 and 3.3.2 tosubsume the terms pl under a 
onstant. Taken together, this yields
|∆l(g)| ≤ a · pl ‖g‖Crfor some 
onstant a and the norm ‖g‖Cr = max

i=0,...,r

∥
∥∂ig

∥
∥
∞.We now translate this one-dimensional result for the 
onvergen
e of ∆i(g) to themulti-dimensional 
ase. For this, we need the norm ‖.‖Cr for multi-dimensionalfun
tions, whi
h we already en
ountered in se
tion 2.4.6.We now give the main result of this se
tion, following [29℄. We use the notation

∂i = ∂
∂xi

to denote the derivate with respe
t to the i-th 
omponent of a fun
tion.Proposition 3.3.1 For f ∈ C∞ ([0, 1]d
), we have |∆α(f)| ≤ adp|α|1 ‖f‖Cr .Proof. We �rst examine the 2-dimensional 
ase. Let f ∈ C∞ ([0, 1]2

). Let
g : x 7→ ∆l (f (x, .)) 33



3 Hierar
hies and the Method of Sparse Grids
∆l is a Dira
 sum, and 
an therefore be written as

∆l =

m∑

i=1

aiδyifor some ai and yi. We have for any s ∈ N0:
∂sg (x) = ∂s

1

m∑

i=1

aif (x, yi) =
m∑

i=1

ai∂
s
1f (x, yi) = ∆l (∂

s
1f (x, .))From the third term we 
an see that ∂sg exists and is 
ontinuous. Furthermore,

‖g‖Cr = max
s=0,...,r

max
x∈Ω

|∆l (∂
s
1f (x, .))|

≤ max
s=0,...,r

max
x∈Ω

a · pl ‖∂s
1f (x, .)‖Cr

≤ a · pl max
x∈Ω

max
s=0,...,r

‖∂s
1f (x, .)‖Cr

= a · pl ‖f‖CrCombining these two statements yields
|∆k ⊗ ∆l(f)| = |∆k(g)| ≤ a · pk ‖g‖Cr ≤ a2 · pk+l ‖f‖CrWe obtain the proposition by iterating over d. �3.4 General error boundsWe generalize the results from the last se
tion with the following de�nition.De�nition 3.4.1 We say that the 
ontributions ∆α(f) are exponentially 
onver-gent to the base p < 1 with the 
onstant c i� |∆α(f)| ≤ c · p|α|1 for all α.Proposition 3.4.2 Let ∆α(f) be exponentially 
onvergent. Then the series∑α ∆α(f)
onverges absolutely.Proof. We need to show that ∑α |∆α(f)| <∞. We have

∑

α

|∆α(f)| =

∞∑

k=0

∑

|α|
1
=k

|∆α(f)|

≤
∞∑

k=0

∑

|α|
1
=k

c · pk

= c
∞∑

k=0

# {α : |α|1 = k} pk
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3.4 General error boundsUsing the fa
t that # {α : |α|1 = k} =

(

k + d− 1

d− 1

), this implies2
∑

α

|∆α(f)| ≤ c
∞∑

k=0

(

k + d− 1

d− 1

)

pkWe now apply the ratio test for this series:
lim

k→∞

(

k + 1 + d− 1

d− 1

)

pk+1

(

k + d− 1

d− 1

)

pk

= lim
i→∞

k + d

k + 1
· p = pSin
e we have p < 1 by assumption, this proves the proposition. �For this se
tion, we assume that QN (f) 
onverges to I(f). With this assumption,proposition 3.4.2 allows us to write the error of quadrature as

ǫ(N) =
∑

α/∈A

|∆α(f)|where A is the set of indi
es whose 
ontributions form the result QN (f). Corre-spondingly, we have inequality
ǫ(N) ≤

∑

α/∈A

|∆α(f)| (3.4.1)To �nd an estimate for this series, the following lemma is helpful.Lemma 3.4.3 Let p < 1, l ∈ N. Then we have
∞∑

k=l+1

(

k + d− 1

d− 1

)

pk = pl
d−1∑

s=0

(

l + d

s

)(
p

1 − p

)d−sProof. Let F (p) =
∑∞

k=l+1 p
k+d−1. F is a power series in p with a 1 as radiusof 
onvergen
e. Be
ause p < 1 by assumption, we 
an we 
an swap summation anddi�erentiation:

∂d−1F (p) = ∂d−1
∞∑

k=l+1

pk+d−12It is easy to remember the formula for the number of indi
es of a given length k by imagining thatwe have k entries to distribute among our d dimensions (for example • • •• for k = 4). We nowinsert d−1 partitions between these entries (for example •|•|•• , (1, 1, 2) or •••||• , (3, 0, 1) for
k = 4 and d = 3). By basi
 
ombinatori
s, the number of possibilities is then just ( k + d − 1

d − 1

).35
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=

∞∑

k=l+1

∂d−1pk+d−1

=

∞∑

k=l+1

(k + d− 1) · · · (k + 1) pk

= (d− 1)!
∞∑

k=l+1

(

k + d− 1

d− 1

)

pkOn the other hand, we 
an evaluate F (p) as a geometri
 series, obtaining
∂d−1F (p) = ∂d−1

∞∑

k=l+1

pk+d−1

= ∂d−1 p
l+d

1 − p

=

d−1∑

s=0

(

d− 1

s

)

∂s
(

pl+d
)

· ∂d−1−s

(
1

1 − p

)

=

d−1∑

s=0

(

d− 1

s

)

(l + d) · · · (l + d− s+ 1) pl+d−s ·

1 · · · (d− s− 1)
1

(1 − p)d−s

= (d− 1)!pl
d−1∑

s=0

(

l + d− 1

s

)(
p

1 − p

)d−sThis leads to the equality
(d− 1)!

∞∑

k=l+1

(

k + d− 1

d− 1

)

pk = (d− 1)!pl
d−1∑

s=0

(

l + d− 1

s

)(
p

1 − p

)d−swhi
h proves the proposition. �We will use this inequality to obtain error bounds for sparse grid quadrature. First,we review Smolyak's original 
on
ept of predetermined non-adaptive sparse gridquadrature. In this 
ase, we only allow index sets of the type Sl := {α : |α|1 ≤ l},where Sl denotes the simplex of indi
es of depth l. This 
orresponds to evaluatingindi
es in the order of in
reasing |α|1 in an online-line algorithm. Looked at in yetanother way, it is equivalent to taking c · p|α|1 as an estimate for rα in algorithm3.2.3, whi
h establishes the link between non-adaptive sparse grid quadrature andthe 
on
ept of exponentially 
onvergent 
ontributions.Be
ause of the shape of the index set, we will also use the name of simpli
ialsparse grid quadrature for these this non-adaptive algorithm, and 
all indi
esordered by in
reasing |α|1 simpli
ial indi
es.We now give estimates for the simpli
ial method.36



3.4 General error boundsProposition 3.4.4 Let ∆α(f) be exponentially 
onvergent to the base p < 1 withthe 
onstant c and let
QN (f) =

∑

α∈Sl

∆α(f)Then we have
ǫ(N) ≤ c · pl

d−1∑

s=0

(

l + d

s

)(
p

1 − p

)d−sProof. Using equation 3.4.1, we have
ǫ(N) ≤

∑

α/∈A

|∆α(f)|

≤
∑

α/∈Sl

|∆α(f)|

=

∞∑

k=l+1

∑

|α|
1
=k

|∆α(f)|

≤
∞∑

k=l+1

∑

|α|
1
=k

c · pk

= c
∞∑

k=l+1

(

k + d− 1

d− 1

)

pkUsing lemma 3.4.3, we obtain the desired result. �We now give an ex
eedingly simple 
orollary, whi
h will nonetheless prove to be veryimportant for general 
onvergen
e theory of sparse grid methods, espe
ially withregard to the hybrid algorithms that we will introdu
e in se
tion 4.4.Corollary 3.4.5 Let ∆α(f) be exponentially 
onvergent as above. LetA ⊂ N
d be theset of multi-indi
es evaluated for QN . Then if A ⊃ Sl, the estimate in the propositionfor ǫ(N) also holds.Proof. We note simply that

ǫ(N) ≤
∑

α/∈A

|∆α(f)| ≤
∑

α/∈Sl

|∆α(f)|

�For l ≥ d, we 
an give the following simpler estimate
ǫ(N) ≤ c ·

d−1∑

s=0

(

l + d

s

)(
p

1 − p

)d−s

≤ c ·
d−1∑

s=0

(2l)s

s!

(
p

1 − p

)d−s
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≤ c · ld−1

d−1∑

s=0

2s

s!

(
p

1 − p

)d−s

= a · plld−1with a = c ·∑d−1
s=0

2s

s!

(
p

1−p

)d−s. By adjusting the 
onstant to 
over the 
ases l < d,this 
orresponds to the estimate already given by Smolyak [33℄
ǫ(N) ≤ a′ · plld−1for some a′ and l ≥ 1, noting that p 
orresponds to 2−α in Smolyak's paper.We now pro
eed to determine the relationship between N and l. For this, assumethat Eval (∆i) ≤ b · qi for some 
onstant b and q > 1. Note that this is followsfrom the 
ondition Eval (Ui) ≤ q

q+1b · qi. This means that for a quadrature formulahierar
hy Ul = Q2l , we have b ≤ 3
2 and q = 2. For the multi-dimensional 
ase, weobtain Eval (∆α) ≤ bdq|α|1The number of evaluations needed for Sl is then for l ≥ d

N =
∑

α∈Sl

Eval (∆α)

=

l∑

k=0

(

k + d− 1

d− 1

)

bdql

≤ bd
l∑

k=0

(2l)d−1 ql

≤ bd2d−1ld−1 q
l+1 − 1

q − 1This gives us
N ≤ b̃ · ld−1ql (3.4.2)for some 
onstant b̃. On the other hand, we have

N =
∑

α∈Sl

Eval (∆α) =

l∑

k=0

(

k + d− 1

d− 1

)

bdql ≥ bdqland therefore
logN ≥ b̂ · l (3.4.3)for some 
onstant b̂.Now let QN be the simpli
ial sparse grid quadrature for the index set Sl. Sin
ewe have p < 1 and q > 1, there exists s > 0 with p = q−s. Using equation 3.4.2, we38
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ial sparse grid vs. a full produ
t gridget the following estimate for the error for l ≥ 1:
ǫ(N) ≤ a · plld−1

= a · b̃s ·
(

b̃qll(d−1)
)−s

· l(d−1)(s+1)

≤ a · b̃sN−s · l(d−1)(s+1)Using equation 3.4.3, we obtain
ǫ(N) ≤ c ·N−s · (logN)(d−1)(s+1)for some 
onstant c and N ≥ 2.The quadrature formula used in the last se
tion has q = 2 and p = 2−r, so in this
ase we simply have s = r. The result in this 
ase 
orresponds to that given in [29℄.With this formula, we see that simpli
ial sparse grid quadrature has an asymptoti

onvergen
e rate of r, whereas the standard produ
t quadrature has r

d . Re
allingthat standard produ
t quadrature was equivalent to adding the 
ontributions in or-der of in
reasing |α|∞, we see that the simple 
hange from |α|∞ to |α|1 makes all thedi�eren
e between the extremely bad 
onvergen
e of r
d due to the 
urse of dimension-ality, and a asymptoti
 
onvergen
e rate r that is as good as for a one-dimensionalfun
tion. Again, this is a very satisfying theoreti
al result. The logarithmi
 termin N and the 
onstants involved are so large for high dimensions d however that we
annot hope to get near to asymptoti
 behavior in any a
tual 
al
ulations. We willsee in the empiri
al data in 
hapter 6 however that adaptive sparse grid quadraturedoes far better than tensor produ
t quadrature pre-asymptoti
ally as well, as thegeneral arguments given at the beginning of se
tion 3.2 are generally valid.Remark 3.4.6 We 
lose with a remark on the origin of the name �sparse grid� [35℄.If we plot the points at whi
h the fun
tion is evaluated for simpli
ial quadrature on39
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Sl as opposed to tensor produ
t quadrature of level l, the former grid appears thinnedout, or �sparse�. This 
an be seen in �gure 3.4.1 on the pre
eding page, whi
h showsthe plots example for the nested Clenshaw-Curtis[7℄ rules with the hierar
hy Ul = Q2lfor d = 2 and l = 3.
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4 Index Re�nement and ErrorEstimates4.1 Introdu
tionIn the last 
hapter, we gave algorithm 3.2.3 for dimension-adaptive sparse grid in-tegration. While good as it stands, it leaves many details to be worked out. Mostimportant of these, it begs the question of how the estimates for rα should be ob-tained. We also need to address another problem, whi
h arises for all numeri
alapproximation methods. It is the fa
t that simply returning a number for the in-tegral estimate is worthless unless some sort of error bound is also given. It makesquite a di�eren
e to re
eive a quadrature value of 2.14892 with error bounds of 1e-5,1e-1 or 1e100. As we will see, the problems of estimating the rα and of estimatingthe error are intertwined. For this reason, we treat them both in the same 
hapter.4.2 Index re�nementWe use the term index re�nement to des
ribe the pro
ess of su

essively pi
kingindi
es for evaluation. As realized in algorithm 3.2.3, this 
orresponds to estimatingthe values rα for the valid indi
es at ea
h step, and pi
king the index α with thehighest estimate. We re
all that
rα =

|∆α(f)|Eval (∆α)Sin
e Eval (∆α) is known, the problem boils down to estimating |∆α(f)|.4.2.1 Estimation using the dire
t prede
essorsOne possibility for estimating |∆α(f)| is by using the values |∆β(f)| that we havealready obtained. We say that β is a dire
t prede
essor of α if β = α− ei for some
i = 1, . . . , d. For a given α, let c1, . . . , ck be the values of |∆β(f)| for the dire
tprede
essors β of α. This leads us dire
tly to the following estimates for |∆α(f)|:
(
∏k

i=1 ci

) 1

k (the geometri
 mean estimator)
min

i=1,...,k
ci (the minimum estimator)

max
i=1,...,k

ci (the maximum estimator) 41



4 Index Re�nement and Error EstimatesNote that all these estimates are only de�ned if α has a least one dire
t prede
essor,so that k ≥ 1. This does not pose a problem. The only index that does not havea dire
t prede
essor is the zero index α = (0, . . . , 0). Sin
e the zero index is theonly index valid for the empty set, it is always the �rst index that is evaluated. Forthis reason, we 
an set the estimate rα for the zero index to an arbitrary value, forexample 0. Sin
e this estimate is not based on any information from the fun
tion,it 
annot be used for error estimation, so we start giving error estimates only whenthe �rst index (or better the �rst few indi
es) have a
tually been evaluated.Our 
hoi
e of the three estimates geometri
 mean, minimum and maximum raisesthe question of why the arithmeti
 average and the hyperboli
 mean were not 
on-sidered. The reason for this is pra
ti
al in nature. For many fun
tions, the values ciwill usually di�er by orders of magnitude. In this 
ase, the arithmeti
 average lies
lose to the maximum, and the hyperboli
 average lies 
lose to the minimum. Wetherefore restri
t our 
onsiderations to the three most salient possibilities.4.2.2 Estimation by evaluationAnother very dire
t way to estimate |∆α(f)| is to 
ompute it by evaluating ∆α(f)(note that the term estimate is used in a rather misleading sense here). Of 
ourse,sin
e ea
h evaluation ∆α(f) represents a further re�nement of the quadrature value,and having 
al
ulated the ∆α(f) for all valid indi
es anyway, we would be ill-advisednot to use these 
ontributions for the quadrature result. This leads to the following,somewhat modi�ed version of algorithm 3.2.3. This algorithm 
orresponds 
losely tothe one given in [16℄. The only di�eren
e is that in [16℄, instead of pi
king the indexwith the highest value for rα, the index with the highest value of |∆α(f)| is 
hosen;that is, the 
ontribution is not weighted by the evaluation 
omplexity.Algorithm 4.2.1 Start with A := ∅.Repeat until a spe
i�ed 
ondition is rea
hed:Let B be the set of valid indi
es with respe
t to A.Set s :=
∑

α∈A∪B ∆α(f).From the set of indi
es valid with respe
t to A, pi
k the index α with the highestvalue for rα.Set A := A ∪ {α}.End RepeatWe see that at any point of the algorithm, the result of quadrature s is the sum ofall 
ontributions from indi
es that are either in A or valid with respe
t to A. The
ontribution ∆β(f) must be 
al
ulated as soon as β be
omes valid. The assignment
s :=

∑

α∈A∪B ∆α(f) 
an be repla
ed by s := s+
∑

α∈C ∆α(f), where C is the set ofthose indi
es in A∪B whose 
ontributions have not yet been added to s. While thisapproa
h takes a little more work to implement, it should be used in pra
ti
e, sin
eit avoids adding all 
ontributions from s
rat
h for ea
h iteration.42



4.3 Error estimates4.2.3 Trivial estimationFinally we give a trivial 
ase. We simply estimate |∆α(f)| to be some 
onstant,for example 1 (again, using the word estimation in a rather loose sense). In this
ase, we have rα = 1Eval(∆α)
, meaning that the indi
es are traversed in the order ofin
reasing evaluation 
omplexity. In many 
ases, for example if Eval (∆i) = 2i, wehave Eval (∆α) > Eval (∆β) for |α|1 > |β|1. In these 
ases, the adaptive algorithmdefaults to the 
lassi
al simpli
ial method (with the addition that it is possible thatthe algorithm may �nish when only part of the last layer {α : |α|1 = l} of the simplex

Sl has been added, leaving us with an index shape in between Sl−1and Sl).4.3 Error estimatesWe now turn to the problem of error estimates. The most important property of anerror estimate η(N) is that it is valid, i.e. that we have ǫ(N) ≤ η(N) for all N .Put di�erently, η(N) should never underestimate the error ǫ(N), as this would leadto spurious results for all work depending on these quadrature results. On the otherhand, we also want to avoid a large degree of overestimation. Note that with thisde�nition, η(N) = 106 is a valid estimate if ǫ(N) = 2−N , but it is 
ertainly not avery good one. Therefore, while we always require our estimates to be valid, we alsowish for them to be e�
ient for them to be useful, i.e. for η(N) generally to beonly slightly larger or at least of the same order of magnitude as ǫ(N).4.3.1 Estimates using the index stru
tureA �rst observation is that if at a given iteration of the algorithm we take the set Aof evaluated indi
es, the 
urrent result of quadrature is s =
∑

α∈A ∆α(f). The erroris then 
onstrained by
ǫ(N) = |s− I(f)|

=

∣
∣
∣
∣
∣
∣

∑

α∈A

∆α(f) −
∑

α∈Nd

∆α(f)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

α/∈A

∆α(f)

∣
∣
∣
∣
∣

≤
∑

α/∈A

|∆α(f)|We now assume that ∆α(f) is exponentially 
onvergent to the base p < 1 (seede�nition 3.4.1). We further assume that this estimate is re�e
ted in the a
tual
ontributions, that is, that we have
|∆β(f)| ≤ p(|β|1−|α|

1) · |∆α(f)| 43



4 Index Re�nement and Error Estimatesfor all su

essors β of α. This allows us to give a bound for the sum of the 
ontribu-tions of all these su

essors:
∑

β ≥ α,

β 6= α

|∆β(f)| ≤ |∆α(f)| ·
∑

β ≥ α,

β 6= α

p(|β|1−|α|
1)

= |∆α(f)| ·








∑

γ∈Nd

p|γ|1



− 1





= |∆α(f)| ·





(
∑

i∈N

pi

)d

− 1



 (4.3.1)
= |∆α(f)| ·

((
1

1 − p

)d

− 1

)

= |∆α(f)| ·
((

1

1 − p

)d

− 1

)We now give a lemma and a proposition that turn this inequality for a single givenmulti-index into a global error estimator.Lemma 4.3.1 Let A be a valid set of indi
es. Let γ /∈ A. Then there exists β ≤ γso that β is valid with respe
t to A.Proof. We give a proof by indu
tion.For d = 1, we take i = max {j : (k) ∈ A for all k < j}. The maximum existsbe
ause 0 is always a member of the set and the set is bounded by γ1. Let β = (i).By de�nition of i, all prede
essors of β lie in A, therefore β is valid. Sin
e γ /∈ A,this also means that γ 
annot be a prede
essor of β. Sin
e the partial order ofmulti-indi
es is a total order for dimension 1, we 
on
lude β ≤ γ.For d > 1, we assume the proposition has already been proved for the dimension
d − 1. For any d-dimensional set of indi
es D we denote the (d− 1)-dimensionalse
tion through D at the height s in the last 
omponent by D(s), i.e.

D(s) :=
{

α ∈ N
d−1 : (α1, . . . , αd−1, s) ∈ D

}Further, de�ne α̌ = (α1, . . . , αd−1) for any d-dimensional index α.Now take s = γd. The set A(s) is valid, be
ause for α′ ∈ A(s) and β′ ≤ α′, we knowthat (β1, . . . , βd−1, s) ≤ α and therefore β′ ∈ A(s) by de�nition. We have γ̌ /∈ A(s).This means that we 
an apply the indu
tive hypothesis to obtain a β′ ≤ γ̌ so that
β′ is valid with respe
t to A(s). In parti
ular, this means that β′ /∈ A(s). Now let
r = max

{
j : β′ ∈ A(k) for all k < j

}. As above, the maximum exists, and we have
r ≤ s = γd.Let β :=

(
β′1, . . . , β

′
d−1, r

). Be
ause β′ ≤ γ̌ and r ≤ γd, we have β ≤ γ, whi
hproves the �rst part of the lemma. Furthermore, we have β′ /∈ A(r), as otherwise r44



4.3 Error estimateswould not be maximum. By de�nition of A(r), this implies β /∈ A.Now let α be any prede
essor of β. If αd = r = βd, then α̌ is prede
essor of β̌and therefore (α1, . . . , αd−1, s) is prede
essor of (β1, . . . , βd−1, s) = β′. Be
ause β′ isvalid with respe
t to A(s), we have (α1, . . . , αd−1, s) ∈ A and �nally α ∈ A be
ause
α ≤ (α1, . . . , αd−1, s) and A is valid. If on the other hand we have αd < r, thenbe
ause (β′1, . . . , β′d−1, αd

)
∈ A and α ≤

(
β′1, . . . , β

′
d−1, αd

), we also have α ∈ A.Sin
e α was an arbitrary prede
essor of β, and β /∈ A, we know that β is valid withrespe
t to A. This proves the se
ond part of the lemma, and 
ompletes the proof. �Proposition 4.3.2 Let A be a valid set of indi
es and let B be the set of indi
esvalid with respe
t to A. Assume that
|∆γ(f)| ≤ |∆β(f)| p(|γ|1−|β|

1) (4.3.2)for γ ≥ β and p < 1. Then
∑

γ /∈A∪B

|∆γ(f)| ≤ c ·
∑

β∈B

|∆β(f)|with c =
(

1
1−p

)d
− 1.Proof. Using inequality 4.3.1, we have

c ·
∑

β∈B

|∆β(f)| =
∑

β∈B

c · |∆β|

≥
∑

β∈B

∑

γ ≥ β,

γ 6= β

|∆γ(f)|

=
∑

β∈B

∑

γ∈Dβ

|∆γ(f)| with Dβ := {γ : γ ≥ β, γ 6= β}

≥
∑

γ∈D

|∆γ(f)| with D :=
⋃

β∈B

Dβ (4.3.3)Now let γ /∈ A ∪ B. By the pre
eding lemma, we know there exists a β ≤ γ sothat β ∈ B. Be
ause γ /∈ B, we even have γ 6= β. This means that γ ∈ Dβ ⊂ D.Sin
e γ /∈ A ∪ B was arbitrary, we have D ⊃ {γ : γ /∈ A ∪B}. Combining it withthe inequality above, we obtain
∑

γ /∈A∪B

|∆γ(f)| ≤
∑

γ∈D

|∆γ(f)| ≤ c ·
∑

β∈B

|∆β(f)|whi
h proves the proposition. �In this way, we have found a way to estimate ǫ(N) with the sum of 
ontributions of in-di
es that are 
urrently valid with respe
t to A. Note that the sum c·∑γ /∈A∪B |∆γ(f)|45



4 Index Re�nement and Error Estimatesfor the quadrature error implies that we take s =
∑

α∈A∪B ∆α(f) and not only
s =

∑

α∈A ∆α(f) in the algorithm. This was exa
tly the 
ase for our modi�ed algo-rithm 4.2.1, so we 
an immediately use c ·∑γ /∈A∪B |∆γ(f)| as an error estimate forit. However, we have the problem that p is generally not known.The error estimate given in [16℄ 
orresponds to the estimate just given, with cheuristi
ally set to 1. With the above 
onstraints and theory, we 
an predi
t thisestimator to only be valid if c ≤ 1, that is, if p ≤ 1 − 1
d
√

2
. Even if this is not the
ase, the estimator does seem to work reasonably well in pra
ti
e. This is due to thefa
t we have given inequalities and not equalities. Espe
ially in 4.3.3, many indi
es

β that o

ur in several Dβ are now 
onsidered only on
e in D. Also, we have usedthe absolute value of 
ontributions throughout, and the 
an
ellation of 
ontributionsof opposing signs may also attenuate the a
tual quadrature error.There are other valid 
on
erns, though. In parti
ular, it is not 
lear how well theassumption 4.3.2 holds. Obviously, sometimes the 
ontribution ∆γ(f) will have asmall absolute value simply by 
an
ellation. We 
an hope that these sorts of e�e
tsbe
ome statisti
ally small if we have a large number of indi
es. However, there mayalso be stru
tural problems with 4.3.2, whi
h may invalidate this approa
h.We 
an modify this error estimate to work with our original algorithm 3.2.3. In-stead of the a
tual 
ontributions we have to take the estimates for the |∆β(f)|with β valid, sin
e the a
tual values are unknown. In this algorithm, we have
s =

∑

α∈A ∆α(f), so we need to add the estimate for ∑

β∈B

|∆β(f)| to the errorestimate. In this way, we arrive at the estimate (c+ 1) ·∑β∈B dβ, where ea
h dβ isthe estimate for |∆β(f)|. Again, we do not know the value of c, requiring us to takesome heuristi
 value.4.3.2 Bla
k box estimatesThe approa
h developed in the last se
tion is in a way very natural, as it takesknow lo
al 
ontributions and adds them to arrive at a global estimate, but we haveseen that it poses many problems. A totally di�erent approa
h ignores all thisinformation, treating the sequen
e of quadrature results QN (f) as a bla
k box. Thisapproa
h is suggested by the fa
t that for many fun
tions in pra
ti
e, we have arobust 
onvergen
e with a stable 
onvergen
e rate over large stret
hes of N , i.e.
ǫ(N) ≈ c ·N−r for some r > 1 and some range N ∈ [N0,N1]. As we have seen in thelast 
hapter, this sort of 
onvergen
e is also expe
ted from theoreti
al results.Viewed in a bilogarithmi
 plot, we have log (ǫ(N)) ≈ log c − r logN . Using asimply linear regression, we 
an estimate the 
onstants c and r, yielding an errorestimate of

η(N) = cest ·N−restThe problem is of 
ourse that we do not know ǫ(N) itself. All we have is thevalues QN (f) as a fun
tion of N . Sin
e QN (f) is an estimate for I(f), for agiven N and for M ≤ N we 
an estimate the error ǫ (M) = |QM (f) − I(f)| by
ζ1 (M,N) := |QN (f) −QM(f)|. Note that that the estimate ζ1 we have given for46



4.3 Error estimates
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Figure 4.3.1: ǫ (M)and ζ (M,N) for ǫ(N) = N−2 and N = 105

ǫ (M) is dependent on bothM and N . Indeed, for a �xed N , the estimate ζ1 (M,N)will generally be
ome more a

urate with in
reasing N , be
ause QN (f) → I(f) for
N → ∞.Note however that the 
loser M gets to N , the more we will underestimate theerror. To give an example, we take ǫ(N) = N−2. The resulting graphs for ǫ (M) and
ζ1 (M,N) are shown in �gure 4.3.1. We see that if M gets to 
lose to N , we losethe linearity of the fun
tion. If we want to get a good �t for our regression, we mustrestri
t ourselves to those values for M that are suitably smaller than N .There is yet another 
on
ern. So far, we have assumed that ǫ(N) de
reases with
N . But this is usually not the 
ase. Instead, ǫ (M) will often os
illate around thevalue 0, with the os
illations getting smaller with N . What we are interested in is notthe error per se, but rather the expe
ted degree of inexa
tness. Thus, our de�nitionof ζ1 does not really 
apture our intent. One way to deal with this problem is tosimply stipulate that ζ (M,N) be de
reasing in M . This leads us to the de�nition

ζ2 (M,N) := max
M ′≥M

ζ1 (M,N)In this way, ζ2 (M,N) represents the maximum di�eren
e of QM ′(f) to QN (f) for
M ≤ M ′ ≤ M , 
apturing the intuition of the remaining inexa
tness or volatility of
QM (f) far better. We 
an see this di�eren
e in �gure 4.3.2.The problem of underestimating for ζ for M 
lose to N still persists, however. Wehave undertaken several attempts to over
ome this problem, but none have been verysu

essful. An adaptive algorithm that attempts to lo
k in on the part of the 
urve47



4 Index Re�nement and Error Estimates
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Figure 4.3.2: ζ1 (M,N) vs. ζ2 (M,N) for N = 105 and a Genz os
illatory fun
tionfor d = 8 and h = 18 (see 
hapter 6)where the ζ (M,N) deviates downward works in some 
ases, but goes wholly astray inothers. A more 
omplex approa
h, whi
h expli
itly modeled this deviation, had thesame problem. In the end, we have settled to simply taking the interval [M
1

2 ,M
3

4 ],that is, the third quarter of value of M in the bilogarithmi
 representation. Thisseems to work reasonably well in pra
ti
e, but is unsatisfa
tory from a theoreti
alpoint of view.Yet another problem is that the exponent r used above is not really a 
onstant.Heuristi
ally speaking, it may 
hange over time. For example for fun
tions of the
lass C∞, r will in
rease with N .In 
on
lusion, the bla
k box estimate given in this se
tion is far more heuristi
than the index-based estimate. Somewhat surprisingly, it often performs better inpra
ti
e, as we will see in 
hapter 6. Still, unsolved problems remain with thisapproa
h, espe
ially with the lower and upper 
uto� for M used in regression.4.4 Hybrid algorithmsIt is very di�
ult to give error bounds for purely adaptive algorithms. The generalproblem is that the algorithm bases its de
isions on where to perform further re�ne-ment on numeri
al values obtained at previous levels of re�nement. If these valuesare very small, the algorithm will not 
ontinue along this path of re�nement. Inalgorithm 3.2.3, for example, if an index α for some reason gets an rα that is verysmall, its 
ontribution will not be 
al
ulated for a long time (i.e. until all 
ompeting48



4.4 Hybrid algorithmsvalid indi
es β have even smaller values rβ). As long as α is not added to the indexset, it also blo
ks further re�nement past this index, as no β with β ≥ α, β 6= α 
anbe
ome valid as long as α /∈ A.For example, we 
an 
onstru
t non-
onstant fun
tions f of 
lass C∞ that have
∆e1

(f) = 0. Indeed, this is true for all f ∈ C∞ that have f (x) = 0 for all points
x evaluated for ∆e1

. As 
onsequen
e, the algorithms given in se
tion 4.2 will notevaluate ∆e2
(f), generally making 
onvergen
e impossible. Non-adaptive sparse gridquadrature does not su�er from this problem, and we have given 
onvergen
e resultsto this e�e
t in the last 
hapter.What we would wish for, then, is a sparse grid quadrature algorithm that is atleast as good as an adaptive version while retaining the guaranteed 
onvergen
e ofthe simpli
ial (stati
) version. This is easier than it sounds. We need simply let theadaptive and the non-adaptive version run in parallel, i.e. alternating between thetwo with every evaluation and then sele
ting the better of the two results at ea
hstep. This would only mean a moderate in
rease in evaluation 
omplexity for ea
halgorithm by the 
onstant fa
tor 2. We would, however, need to �gure out how to
hoose whi
h of the two results is better at any given time.But this is not ne
essary, be
ause we 
an do even better. Instead of letting thetwo approa
hes, adaptive and stati
, run independently, we merge them, letting theminform ea
h other. For this, we give a modi�ed hybrid version of our main algorithm3.2.3 .Algorithm 4.4.1 Start with A := ∅, s := 0, nadapt := 0, nstatic := 0.Repeat until a spe
i�ed 
ondition is rea
hed:From the set of indi
es valid with respe
t to A, pi
k an index α with the highestestimate for rαFrom the set of indi
es valid with respe
t to A, pi
k an index β with the smallestsize of |β|1If nadapt + Eval (∆α) ≤ nstatic set γ := α, nadapt := nadapt + Eval (∆α)otherwise set γ := β, nstatic := nstatic + Eval (∆β)Set A := A ∪ {γ}Set s := s+ ∆γ(f)End RepeatIn this way we alternate between adaptive and stati
 indi
es, giving ea
h an equalshare of the fun
tion evaluations. Of 
ourse, we 
annot always exa
tly have nadapt =

nstatic. Indeed, on
e we pi
k a simpli
ial index α for evaluation, nstatic in
reases byEval (∆α), whi
h nadapt remains 
onstant, and vi
e versa for an adaptive index. Thealgorithm above resolves this problem in a very one-sided manner, ensuring that atany time we have nadapt ≤ nstatic, that is, it is biased towards preferring simpli
ialindi
es. This bias was 
hosen be
ause we have known 
onvergen
e results for thesimpli
ial algorithm, but none for the adaptive algorithm, and this bias allows usto have the same guaranteed 
onvergen
e rate for the hybrid algorithm by assuringthat at all times at least half the fun
tion evaluations have been used for simpli
ial49



4 Index Re�nement and Error Estimatesindi
es. Indeed, if for some number of fun
tion evaluations M the non-adaptivealgorithm has 
ompleted the simplex Sl, then we have A ⊃ Sl for the hybrid versionat N = 2M . Using proposition 3.4.5, we see that ǫhybrid
max (N) ≤ ǫstatic

max

(
N
2

). In termsof 
onvergen
e rate, this translates to ρhybrid(N) = ρstatic
(

N
2

), in parti
ular givingus the same asymptoti
 
onvergen
e rate. On the other hand, the algorithm stilluses half its evaluations for adaptive indi
es, so we 
an expe
t it to perform as wellas the fully adaptive algorithm (again, with the 
aveat of needing an N that is twi
eas large).With this hybrid algorithm, adaptive and stati
 methods work on the same indexset, 
ooperating and informing ea
h other, instead of only running in parallel. In-deed, some indi
es will be sele
ted by both the stati
 and the adaptive method. Byoperating on a shared set of evaluated indi
es, these indi
es are evaluated only on
e,in e�e
t halving the evaluation 
omplexity for these indi
es for ea
h 
omponent.Even more important is another result of this re
ipro
al 
ooperativity. Returning tothe example above, where we had ∆e1
(f) = 0, we see that now the index e1 wouldsoon be evaluated as a stati
 index. In this way, all indi
es β ≥ e1, β 6= e1 are notonly evaluated by the stati
 method, but also opened up for the adaptive algorithm,whi
h so to speak is lifted over the road-blo
k of e1 by the stati
 method. We 
antherefore expe
t hybrid methods to attain better results than the optimum of thesolely stati
 or the solely adaptive methods together.Of 
ourse, the number of fun
tion evaluations allotted to the non-adaptive methodneed not be 1

2 , and we 
an easily modify the algorithm to support any ratio. For anyratio r > 0 of simpli
ial fun
tion evaluations out of all evaluations, we 
an give thesame guarantee on 
onvergen
e and asymptoti
 
onvergen
e rate as above, notingthat in this 
ase the 
onvergen
e is slowed by the fa
tor 1
r . For the spe
ial 
ase of

r = 1, we get the non-adaptive version of the algorithm. On the other hand, forthe ratio r = 0, we get the fully adaptive version, and do not have a guarantee of
onvergen
e as above.
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5 The Implementation5.1 Introdu
tionWe have implemented the dimension-adaptive algorithm of sparse grid integrationfor the 
omputer. Although the algorithm in its stated form seems simple enough,many di�
ult 
hoi
es have to be made during implementation pertaining to problemssu
h as estimation of the index 
ontribution, error estimation and data stru
tures.In many 
ases, it was not 
lear a priori what the best 
hoi
e would be. For thisreason, an obje
t-oriented programming language was 
hosen, whi
h allows for theeasy and robust design of the program in a modular fashion. For ea
h of thesemodules we 
an then program di�erent implementations, whi
h 
an be mixed andmat
hed seamlessly to �nd the optimal 
ombination.We have 
hosen Java as a programming language for several reasons. The mostimportant is its stringent obje
t-oriented design, whi
h allows for a 
learer stru
-ture than C++. It provides a high level of safety me
hanisms (for example arraybound enfor
ement) and redu
es program 
omplexity (for example through auto-mati
 garbage 
olle
tion). It is also available for a wide variety of platforms, whereit 
an be run immediately without the need for error-prone re
ompilation. On theother hand, Java is not well respe
ted in the high performan
e 
ommunity be
auseit is per
eived as signi�
antly slower than C/C++. While this was true for the very�rst Java versions, the use of just in time 
ompiler te
hnology has signi�
antly 
losedthe gap. Indeed, 
urrent versions of Java outperform C in several ben
hmarks[21℄.In any 
ase, the 
urrent implementation is intended to explore general possibilitiesof implementation, and to 
ompare the di�erent strategies and 
hoi
es for the di�er-ent modules, and not to give maximum performan
e. Java was 
hosen as the best
ompromise for a programming language that is established, o�ers relatively highperforman
e, and allows for easy and robust development.In the following se
tions, we des
ribe the various modules that make up the im-plementation and 
ompare the di�erent options for their realization. We will onlyexplain the main ideas behind the 
ode, limiting dis
ussion of the details of imple-mentation to the essentials. For details, we refer to the authors website[25℄, whereall 
ode and extensive do
umentation are available.5.2 The 
ore algorithmIn the algorithm 3.2.3, we spe
i�ed no method by whi
h to arrive at an estimate forthe rα. We have developed several me
hanism for estimation, whi
h are realized as51



5 The Implementationdi�erent 
lasses. All of these 
lasses implement the main interfa
epubli
 interfa
e Integrator<Evaluator> {IntegrationResult integrate(Evaluator integrand,StopCondition 
ondition,List<Visualizer> visualizers)throws IntegrationFailedEx
eption;...}We will des
ribe the two major implementations of the this interfa
e. The 
lassEstimateIntegrator implements algorithm 4.4.1, supporting simpli
ial quotas be-tween 0 (fully adaptive) and 1 (non-adaptive). It 
an use the minimum, maximumand geometri
 estimate introdu
ed in se
tion 4.2.1. The 
lass EvaluateIntegratorimplements a hybrid version of algorithm 4.2.1, and also supports simpli
ial quotasbetween 0 and 1.The method integrate forms the main entry point for quadrature. The integrator
lasses all work the same way: They perform an open-ended quadrature until the
ondition spe
i�ed by the given StopCondition 
lass is rea
hed. At this point, themethod returns, giving an IntegrationResult return value. This 
lass gives theresult of quadrature, an error estimate and the number of times the fun
tion hasbeen evaluated during quadrature. It may also give supplemental information aboutthe quadrature pro
ess, for example issuing a warning that the fun
tion behavederrati
ally and that the results should therefore be treated with 
aution.The third argument gives a list of 
lasses that give visual feedba
k about thequadrature pro
ess. We will 
over this part of the implementation in detail in se
tion5.5.The most tri
ky part of the implementation 
on
erns the �rst argument. Whatmust be understood is that the algorithm as implemented never itself sees the fun
-tion to be integrated. Indeed, su
h a fun
tion must not even exist. Instead of afun
tion, the �rst argument spe
i�es a more abstra
t Evaluator:publi
 interfa
e Evaluator {int dimension();double deltaEvaluate(Index index)throws IntegrationFailedEx
eption;boolean 
anEvaluate(Index index);int pointsForIndex(Index index);}We �rst 
over the standard 
ase, where the Evaluator dire
tly a
ts on a fun
tion. Inthis 
ase, the �rst method returns the fun
tion dimension. The se
ond method takesa multi-index α (implemented as Index) and returns the value ∆α(f) for that index.The third method de
lares whether the Evaluator is able to evaluate the value for52



5.2 The 
ore algorithmthe given index. Evaluation may not be possible, for example, if the one-dimensionalquadrature formula used by the Evaluator only supports a limited number of nodes.If evaluation is possible, the last method returns the number of fun
tion evaluationsneed to perform evaluation and 
ompute the value ∆α(f) for the given index.This, as stated, is the standard 
ase. As we 
an see, the Evaluator makes noexpli
it mention of a fun
tion anywhere. It is a bla
k box that only returns a di-mension, some value for ea
h index, and information on whether an index 
an beevaluated and how 
ostly this is. No restri
tions are made on where this information
omes from. We have implemented non-standard evaluators for in�nite-dimensionalintegrals and for virtual indi
es, where several indi
es are subsumed to one, redu
ingthe size of the index set. As of the writing of this thesis, both of these 
omponentsare still in early development, and are not 
overed further.Another feature of algorithm 3.2.3 that has to be 
ast into more 
on
rete termsis the stopping 
ondition. We 
an easily 
ome up with several su
h 
onditions thatmay be of use:
• Stop when the estimate for the error ǫ(N) falls below a given threshold
• Stop when the estimate for the relative error ǫ(N)

|QN (f)| falls below a given thresh-old
• Stop when the number of fun
tion evaluations N rea
hes a given thresholdAll of these are available in the implementation. They are realized as 
lasses imple-menting the interfa
e StopCondition:publi
 interfa
e StopCondition {boolean stop(IntegrationResult result);...}The main method is stop(IntegrationResult). It takes an IntegrationResultsupplied by the main algorithm, whi
h des
ribes the 
urrent state of integration.Based on this information, the method returns true if the 
ondition is satis�edand false otherwise. The 
lass MultipleStopCondition allows the 
ombinationof several stopping 
onditions, returning the signal to stop as soon as one of the
onstituent 
onditions is satis�ed.Spe
ial 
are needs to be taken with the stopping 
onditions based on the error esti-mate. This is be
ause the error estimate returned as part of the IntegrationResultmay underlie �u
tuations due to the sampling pro
ess. If we poll the error estimate
ontinuously to see if it has fallen below a given threshold, these �u
tuations bias ustowards stopping too early. The reason for this one-sided bias is that stopping is aone-sided operation. If we stop, we don't 
ontinue to see if maybe the error estimategoes up again. If we don't stop, however, we simply 
ontinue, sampling the errorestimate until it does fall below the threshold. We have tried to mitigate this de
ision53



5 The ImplementationName Distribution Hierar
hy Exa
t on NestedTrapezoidal λ1 ([0, 1])
N (0) = 1

N (l + 1) = 2l−1 + 1
n/a yesGauss-Legendre λ1 ([0, 1]) N (l) = 2l+1 − 1 P2N(l)−1 noClenshaw-Curtis λ1 ([0, 1]) N (l) = 2l+1 − 1 PN(l)−1 yesPatterson λ1 ([0, 1]) N (l) = 2l+1 − 1 P 3

2
N(l)+ 1

2

yesGauss-Hermite N (0, 1) N (l) = 2l+1 − 1 P2N(l)−1 noTable 5.1: Properties of the di�erent quadrature rulesbias at least somewhat by only sampling the error estimate at in
reasing intervals.In the implementation, we have 
hosen the following strategy: if we sample the errorrate at N = M , we wait until N > 3
2M until sampling again.5.3 The quadrature formulasThe implementation supports a wide range of quadrature rules. For Ω = [0, 1] and

µ = λ1 ([0, 1]), we have trapezoidal rules, Gauss-Legendre rules, Clenshaw-Curtis[7℄rules and Patterson rules (a.k.a. Kronrod-Legendre rules)[31℄. The Patterson rulesare designed to attain a maximal level of polynomial exa
tness while retaining nodesfrom previous levels (i.e. being nested). Some of the rules given here originally referto an interval di�erent from [0, 1]. In this 
ase, they have been res
aled a

ordingly.The 
ase of Ω = R and µ = N (0, 1), where N(0, 1) denotes the Gaussian normaldistribution, is supported by a res
aled version of the Gauss-Hermite rules. Theproperties of the quadrature rules as implemented are summarized in table 5.1. Forea
h of these quadrature rules, we have a hierar
hy of quadrature formulas Ul (
om-pare se
tion 3.2). The hierar
hy 
olumn of the table gives the relationship betweenthe level l and the number of nodes N (l) for that level.The quadrature formulas Ul are Dira
 sums, and are modeled by thepubli
 
lass QuadratureFormula {publi
 int getSize();publi
 double getNode(int index);publi
 double getWeight(int index);}These method getSize() returns the number of nodes of the Dira
 sum, and thus
orresponds to N (l) (again using the notation from se
tion 3.2). The nodes andweights themselves are returned by the eponymous methods.In this way, ea
h quadrature rule 
an be implemented as a 
lass that returns aQuadratureFormula for ea
h level l. This idea is 
aptured in thepubli
 interfa
e Generator {QuadratureFormula getByLevel(int level);54



5.4 The appletint maxLevel();....}Most of the generators produ
e the requested quadrature formula on the �y. This
auses a brief delay the �rst time a quadrature formula is requested for a given level.On
e it has been produ
ed, however, the QuadratureFormula is stored in a 
a
heand is available without any delay on subsequent request. In 
ontrast to this, thePatterson quadrature rule works with pre-spe
i�ed tables of values. In both 
ases,only levels up to the maximum supplied by the method maxLevel() are supported.This is either be
ause the algorithm for quadrature formula generation is numeri
allystable only up to a 
ertain level and number of nodes, or, in the 
ase of the Pattersonrules, be
ause tabulated values are only available up to a maximum level.The 
lass DeltaGenerator is used to produ
e the ∆l that are needed for sparsegrid quadrature. It wraps around a Generator for a spe
i�
 quadrature rule, pro-du
ing the ∆l from the Ul produ
ed by this Generator. The DeltaGenerator 
lassautomati
ally re
ognizes when some nodes used in Ul are present again in Ul+1, asin the Patterson formula. In these 
ases, it fuses the weights from Ul and Ul+1 toprodu
e only one node for the 
ombined weight, so that the total number of nodesand therefore Eval (∆l+1) is as small as possible.5.4 The appletThe implementation 
ontains a Java applet that serves as an intera
tive front end forthe quadrature pro
ess. It allows the user to sele
t from various fun
tion 
lasses andto set the stopping 
onditions. It supports dimension-adaptive sparse grid quadra-ture, non-adaptive sparse grid quadrature, Monte Carlo quadrature and Quasi-MonteCarlo quadrature. The quadrature rules 
an be spe
i�ed for both the adaptive andthe non-adaptive sparse grid quadrature method. For adaptive sparse grid quadra-ture, the user 
an also sele
t various re�nement and error estimation strategies.In �gure 5.5.1, we see some of these settings in the window at the top 
enter.Spe
i�
ally, the adaptive sparse grid (�ASG�) quadrature is used with the Pattersonrules for the Genz os
illatory fun
tion (see 
hapter 6) with dimension 8 and di�
ulty18.5.5 VisualizationThe implementation supports a wide range of modules for visualizing the quadra-ture pro
ess online. This has proved extremely helpful in the development of thealgorithms, as the graphi
 display of relevant data makes it far easier to analyzeand grasp intuitively why the algorithm is or is not working, and are more revealingthan only ben
hmark data on 
onvergen
e. In the same vein, 
hanges to the algo-rithm 
an immediately be assessed, and parameters 
an be tuned intera
tively. A55



5 The Implementations
reenshot of the implementation with several visualization modules a
tive is shownin �gure 5.5.1 on the next page.The �gure shows the results of a quadrature for a Genz os
illatory fun
tion withdimension 8 and di�
ulty 18. We used the fully adaptive approa
h with 
ontributionestimation by geometri
 average, and performed quadrature up to N = 104 evalu-ations. We will give a short des
ription of the 
omponents shown. For a detaileddes
ription of all the features, please refer to the online do
umentation and 
ode at[25℄.5.5.1 The Grid windowThe grid window shows 2-dimensional sli
es through the index set. The top twosliders allow the user to sele
t the dimensions i and j of interest. The windowthen displays all indi
es α with αk = 0 for k 6= i, j. The sizes of the 
ontributions
∆α(f) are visualized in the left pane by 
olor s
ale. A bla
k dot signi�es a positive
ontribution, otherwise we have ∆α(f) < 0. The slider on the right adjusts the
olor s
ale. The slider on the bottom is used to retroa
tively analyze the quadraturepro
ess. It allows the user to sele
t any M with 0 ≤M ≤ N , and show the state ofquadrature at this point in the pro
ess. On the right pane, we see the 
ontributionsknown to the algorithm at this point as full squares. The valid indi
es and the
urrent estimates for the size of their 
ontributions are shown as the smaller squares.A mouse-over fun
tion displays the numeri
al values of ∆α(f), its estimate andEval (∆α(f)) for the indi
es.5.5.2 The Extent windowThis visualization 
omponent display the maximum |α|1 en
ountered during quadra-ture as a red horizontal bar. The bla
k verti
al bars display the maximum αi en-
ountered for ea
h dimension i = 1, . . . , d. This allows the user to qui
kly appre
iatehow important ea
h dimension was in the quadrature pro
ess.5.5.3 The Result windowThe result window displays the quadrature error ǫ(N) and several related statisti
sover the 
ourse of quadrature. Of 
ourse, the a
tual error ǫ(N) 
an only be shown ifthe 
orre
t value for the integral I(f) is known. The main panel shows a bilogarithmi
plot displaying the various statisti
s against the fun
tion 
alls N on the abs
issa. Thered and bla
k 
urve shows the absolute value of the error |ǫ(N)|; a bla
k segmentindi
ates that ǫ(N) is positive for this segment, and a red segment that it is negative.The pink 
urve displays the error estimate given by the quadrature algorithm withrespe
t to N .The error line starts at the �rst verti
al grid line, whi
h 
orresponds to N = 1.The next gridlines are for N = 10, N = 100, et
. The pink error 
urve only startsat N ≈ 300, be
ause for N < 300, the algorithm deemed the amount of information56



5.5 Visualization

Figure 5.5.1: The appli
ation
57



5 The Implementationa

umulated too small to give a meaningful estimate. The di�erent sliders allow theuser to adjust the se
tion of the plot that is shown. This window also features amouse-over fun
tion that numeri
ally displays the grid 
oordinates in the plot.5.5.4 The Contribution windowThe 
ontribution window shows the a
tual values of rα for evaluated and non-evaluated indi
es. The top pane shows rα for those indi
es α1, α2, . . . , αk that wereevaluated during quadrature. The sizesof the rα is plotted logarithmi
ally againstthe non-logarithmi
 abs
issa i=1,. . .,k. Again, bla
k 
odes for positive and red fornegative 
ontributions. The lower pane shows the values for rβ for those indi
es βthat were not evaluated by the quadrature algorithm. These are sorted in order ofde
reasing rβ. The values rβ are 
omputed in the ba
kground after the quadratureis �nished in an open-ended pro
ess.The top pane of the window 
an be used to assess if the algorithm a
tually didmanage to trawl through the indi
es in order of de
reasing rα. Any indi
es β withlarge rβ that the algorithm missed will be visible in the lower pane. In an idealworld, the top panel would show a graph of monotonously de
reasing rα, and all rβin the lower pane would be smaller than the rightmost (lowest) rα of the top pane,meaning that the algorithm used the optimal set of indi
es.5.6 Data stru
tures and 
omplexityThroughout this thesis, we have used the evaluation 
omplexity N as basis for de-s
ribing the e�
ien
y of our algorithms. In this se
tion, we justify this 
hoi
e for ourmain algorithm 3.2.3. This is not trivial. We need 
ompli
ated data stru
tures formanaging the set of multi-indi
es, and we need to pay 
areful attention that thesestru
tures are e�
ient. Otherwise, we might spend more time managing ourselvesthan doing a
tual work1.5.6.1 Multi-indi
esMulti-indi
es are modeled by the interfa
e Index. They 
onform to the immutablepattern, that is, the multi-index α they represent 
annot be modi�ed on
e they havebeen instantiated. This allows the indi
es to be freely used and ex
hanged in theprogram without extra logi
 to ensure that they are not modi�ed outside of their
urrent s
ope.The multi-index itself is 
oded in a sparse fashion, so that instead of all αi, theindex stores tuples (i, αi) for only those i where αi > 0. Let C (α) denote the numberof non-zero 
omponents for the index α, i.e. C(α) := #{i : αi > 0}. In this way, theamount of memory required to store an index is independent of the dimension of theproblem and is instead proportional to C(α). Be
ause C(α) ≤ d, the dimension d1Although tempted, the author refrains from any obvious jokes about bureau
ra
y58



5.6 Data stru
tures and 
omplexityforms an upper bound for C(α). Often, espe
ially for high d, C(α) will be far smallerthan d.The tuples (i, αi) are stored in order of in
reasing i. This allows us to perform abinary sear
h on the tuples when a parti
ular 
omponent is a

essed, with logarithmi
time in C(α).5.6.2 The index setThe set of indi
es is stored by means of a hash table, whi
h allows fast randoma

ess. This is important be
ause the algorithm often needs to a

ess the dire
tprede
essors of a given index β, for example to 
al
ulate its expe
ted 
ontributionas per se
tion 4.2.1, or to determine if all dire
t prede
essors of β are already in theset, and therefore β is valid. The lookup time of a hash table is of the order C(β).5.6.3 QueuesAn important part of the algorithm is �nding an index α with a maximum value of
rα. To a

omplish this e�
iently, the valid indi
es are stored in a priority queue.A priority queue of the size M takes time on the order of log2 (M + 1) for insertingelements and for removing a maximum element, whi
h is far more e�
ient than thetime of the order M that would be used for trawling through all elements to �nd anelement with a maximum value.5.6.4 The 
omplete algorithmWe now give a step by step walk-through of the algorithm 3.2.3, listing all operationsthat have time dependent on d and N . For this se
tion, we assume that Eval (∆i) ≥
2i. This is the 
ase for all quadrature rules in the implementation.The following operations are performed for ea
h index in the index set:1. We evaluate ∆α(f) for the index. Be
ause Eval (∆i) ≥ 2i, this 
orrespondsto at least 2|α|1 evaluations of the d-dimensional fun
tion, giving a total timeorder of at least d · 2|α|1 .2. We add α to the index set. The time required is of the order C(α).3. We �gure out whi
h new indi
es have be
ome valid through the last step. Forthis, we 
he
k ea
h of the forward neighbors α+ei, i = 1, . . . , d if it has be
omevalid. The index α + ei has be
ome valid if all its ba
kward neighbors are inthe index set. Sin
e an index has C(α+ ei) ≤ C(α) + 1 ba
kward neighbors,and 
he
king whether an index β = α+ei −ej is in the set requires C(β) timewith C(β) ≤ C(α), the total time is of the order d · (C(α) + 1)2.Adding these terms, the time for the management operations is of the order

C(α) + d · (C(α) + 1)2 59



5 The ImplementationOn the other hand, the time for fun
tion evaluations is at least
d · 2|α|1Be
ause C(α) ≤ |α|1, this shows that management time is at most of the same orderas the time for fun
tion evaluations.We need also examine the operations related to the index queue. Here, the sit-uation is more 
ompli
ated. We �rst examine the simpli
ial 
ase. For this, let βi,

i ∈ N be a list of all indi
es in order of in
reasing length |βi|1. We give the followingproposition.Proposition 5.6.1 Let S ∈ N, and let A = {βi : i ≤ S}. Let N(S) be the 
orre-sponding number of fun
tion evaluations. Then we have
S∑

k=1

log2(k + 1) ≤ max(3, d) ·N(S)Proof. Let a = max(3, d). We use the fa
t that
a ·N(S) = a ·

S∑

k=1

Eval(∆βk
) ≥

S∑

k=1

a · 2|βk|1and perform a 
omponentwise 
omparison of the two sums
S∑

k=1

log2(k + 1) and S∑

k=1

a · 2|βk|1For a given k, let
l = max{r : #Sr ≤ k}be the level of the largest simplex with less or equal than k elements. Be
ause theindi
es βi are arranged in simpli
ial order, this means that |βk| ≥ l and therefore

2l ≤ 2|βk|1 (5.6.1)We have
k < #Sl+1 =

(

d+ l + 1

l + 1

)

≤ (d+ l + 1)l+1and therefore
log2(k + 1) ≤ (l + 1) log2(d+ l + 1) (5.6.2)We now want to prove that for l ≥ 1

(l + 1) log2(d+ l + 1) ≤ a · 2l (5.6.3)60



5.6 Data stru
tures and 
omplexityBy de�nition of a, this holds for l = 1. It also holds for l > 1 be
ause
∂

∂l

(

a · 2l − (l + 1) log2(d+ l + 1)
)

= a · (log 2) · 2l − log2(d+ l + 1) +
l + 1

d+ l + 1

≥ 2

3
d · 2l − log2(d+ l + 1) + 1

> 0Combining equation 5.6.3 with equations 5.6.1 and 5.6.2 yields
log2(k + 1) ≤ a · 2|βk|1whi
h 
ompletes the proof. �Corollary 5.6.2 Let A be an arbitrary index set, and S = #A. Let N the numberof fun
tion evaluations. Then

S∑

i=1

log2(k + 1) ≤ max(3, d) ·NProof. We need simply arrange the elements α1, . . . , αs in order of in
reasinglength. Be
ause the β1, . . . , βs have minimal length, we have 2|αi|1 ≥ 2|βi|1 for i =

1, . . . , S and therefore N ≥ N(S). �For algorithm 4.2.1, the indi
es in the queue are always a subset of the index set A.At the time that we evaluate index αk, there 
an therefore be at most k indi
es inthe queue. A queue operation then needs time of the order log2(k + 1). For ea
hindex, we have one insertion and at most one removal. Therefore the total time forqueue operations is
2 ·

S∑

k=1

log2(k + 1)whi
h by the 
orollary is of the same order as the time d ·N used for evaluating thefun
tion.The situation is less favorable for algorithm 3.2.3. Here, for ea
h index in the indexset, up to d forward neighbors may be pla
ed in the queue along with an estimate fortheir 
ontribution without any time being spent for evaluation of the 
ontributionof these indi
es. Indeed, we 
an 
onstru
t index sets for whi
h the amount of timefor queue operations is larger by the order of d than the amount of time spent onfun
tion evaluations. In this respe
t, algorithm 4.2.1 is preferable to algorithm 3.2.3for large dimensions d, as the latter may then spend the larger amount of time withmanagement instead of a
tual evaluation work.
61



5 The Implementation

62



6 The Genz Test Suite6.1 Introdu
tionThe theoreti
al results available for the 
onvergen
e of a spe
i�
 quadrature methodonly give some indi
ation to its utility. For one, theoreti
al results are usually onlyavailable for spe
i�
 
ases. In pra
ti
e, we often observe that a quadrature methodperforms quite well for many fun
tions for whi
h no theoreti
al error bounds areknown. Even where theoreti
al results are available, they generally give only upperbounds for a whole 
lass of fun
tions, and are valid for the worst 
ase performan
ewithin this 
lass, even though performan
e may be mu
h better for the majority offun
tions. For this reason, a 
omputer-based ben
hmark that gives real-world per-forman
e 
onstitutes a valuable 
omplement to the 
onvergen
e results from theory.6.2 The Genz test fun
tionsGenz [14℄ proposed a test suite for ben
hmarking multi-dimensional quadraturemethods in 1984. The suite is 
omposed of six di�erent fun
tions 
lasses, ea
h repre-senting an aspe
t or problem typi
al for multi-dimensional integration. All fun
tion
lasses have been designed to be used on the multi-dimensional unit 
ube [0, 1]d withthe measure λd
(
[0, 1]d

):
f1 (x) := cos

(

2πu1 +
d∑

i=1

aixi

)

f2 (x) :=
d∏

i=1

(

a−2
i + (xi − ui)

2
)−1

f3 (x) :=

(

1 +
d∑

i=1

aixi

)−(d+1)

f4 (x) := exp

(

−
d∑

i=1

a2
i (xi − ui)

2

)

f5 (x) := exp

(

−
d∑

i=1

ai |xi − ui|
)

f6 (x) :=







0 for x1 > u1 or x2 > u2

exp

(
d∑

i=1
aixi

)

otherwise 63



6 The Genz Test Suite
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6.2 The Genz test fun
tionsThese fun
tions are given the names �os
illatory�, �produ
t peak�, �
orner peak�,�Gaussian�, �
ontinuous� and �dis
ontinuous�, respe
tively, re�e
ting their salient
hara
teristi
s. Illustrations of these fun
tions for d = 2 are given in �gure 6.2.1 onthe fa
ing page.Ea
h fun
tion is dependent on a set of parameters ai and ui. The parameters
a1, . . . , ad 
an take values in R>0 and re�e
t the di�
ulty of quadrature, for exam-ple determining how qui
kly the fun
tion os
illates or how sharp the peak is. Theparameters u1, . . . , ud take values in [0, 1] and are more or less independent of thedi�
ulty, instead shifting the fun
tion in spa
e. For example, they determine theposition of the wave 
rests for f1 or of the dis
ontinuity for f6. In this way, ea
h fun
-tion 
lass has many di�erent representatives. We 
an therefore run our ben
hmarkwith a large number of fun
tions for ea
h 
lass, and give statisti
al 
omparisons forthe di�erent fun
tion 
lasses.The Genz fun
tions were designed in su
h a way that their integrals 
an be easilydetermined analyti
ally. We have

I (f1) = 2d cos

(

1

2

(

4πu1 +

d∑

i=1

ai

)
d∏

i=1

sin
(ai

2

)
)(

d∏

i=1

ai

)−1

I (f2) =

d∏

i=1

ai (arctan (ai (1 − ui)) + arctan (aiui))

I (f3) =

(

d!
d∏

i=1

ai

)−1
∑

α∈{0,1}d

(−1)|α|1

1 +
∑d

i=1 αiai

I (f4) =
d∏

i=1

√
π

2ai
(erf (aiui) − erf (ai (ui − 1)))

I (f5) =
d∏

i=1

a−1
i

(

2 − e−aiui − e−ai(1−ui)
)

I (f6) =

min(2,d)
∏

i=1

eaiui − 1

ai

d∏

i=3

eai − 1

aiwhere erf (x) := 2√
π

∫ x
0 e

−t2dt is the error fun
tion.When generating test fun
tions, we 
hoose the ai and ui pseudo-randomly withuniform distribution on [0, 1]. The ai are then res
aled to a′i := hk·ai

‖a‖
1

for a givennumber hk for ea
h fun
tion 
lass. This hk then re�e
ts the di�
ulty level of thefun
tion fk that is generated. The di�
ulty levels hk, k = 1, . . . , 6 must be deter-mined in advan
e for ea
h dimension d examined. They should be 
hosen in su
h away that the di�erent fun
tions 
lasses have 
omparable di�
ulty in some sense. 65



6 The Genz Test Suite6.3 Finding good parameters for the algorithmIn the last 
hapter we have seen that the implementation of the dimension-adaptivesparse grid quadrature algorithm is 
omposed of many di�erent modules, ea
h ofwhi
h has di�erent realizations. In this se
tion, we will use the Genz test suite as aben
hmark to sele
t whi
h 
ombination of realizations for these modules works best.Be
ause of the large set of parameters, we do not attempt an optimization on the fullparameter spa
e. Rather, we only modify one parameter at a time, holding the otherparameters �xed, and hoping that the optimum found then is also the optimum inother 
ases. Indeed, the modules are to a large part independent of one another, andthe results rather 
lear, so that this assumption gains 
redibility.We have performed the ben
hmarks in dimension d = 8, using the di�
ulties
h1 = 9

h2 = 19

h3 = 2.1

h4 = 12

h5 = 15

h6 = 2.9We used the Monte Carlo method as a baseline for determining these values. Spe
if-i
ally, we 
hose hi so that for N = 104 fun
tion evaluations, the relative error ofquadrature for the Monte Carlo method was about 10−2. We have 
al
ulated theresults of quadrature QN (f) for N = 100, 200, 400, . . ., 102400. In some 
ases, thea
tual values are slightly higher due to the fa
t that 
al
ulating the 
ontribution foran index is an atomi
 operation for the algorithm. For ea
h ben
hmark, we evaluated100 randomly generated fun
tions from ea
h 
lass.6.3.1 The 
hoi
e of index re�nement strategyWe 
ompared the following index re�nement strategies:Algorithm Des
riptorAlgorithm 4.2.1 EvaluateAlgorithm 3.2.3 with minimum estimator Estimate MinAlgorithm 3.2.3 with maximum estimator Estimate MaxAlgorithm 3.2.3 with geometri
 estimator Estimate GeomIn ea
h 
ase, we use a hybrid version of the algorithm with a simpli
ial quota of 0.5,and the Gauss-Legendre quadrature rules. The results are shown in �gure 6.3.1 onthe next page. Here and in all subsequent �gures of this type, we plot the averagenumber of 
orre
t digits (that is − log10
ǫ(N)
|I(f)| ) against log10N . We see the di�eren
esbetween the various re�nement strategies are not very large, showing that the general66



6.3 Finding good parameters for the algorithm
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6 The Genz Test Suitestrategy of the algorithm is only in�uen
ed little by the spe
i�
 form of the estimate.Of the all strategies, �Estimate Min� seems to perform best overall by a little bit, sowe have 
hosen it for further testing.6.3.2 The 
hoi
e of quadrature rulesTaking the �Estimate Min� algorithm with a simpli
ial ratio of 0.5, we now 
omparedi�erent quadrature rules:Quadrature Rule CommentPatterson Nested rule with optimal degree of polynomial exa
tness(of the order 3
2N)Clenshaw-Curtis Nested rule with suboptimal polynomial exa
tness (of theorder N)Gauss-Legendre Non-nested rule with optimal degree of polynomial exa
t-ness (of the order 2N)Trapezoidal Nested rule for pie
ewise linear interpolationThe results are shown in 6.3.2 on the fa
ing page. We see that that the Pattersonrules perform best, 
losely followed by Gauss-Legendre. It seems that the higherpolynomial exa
tness a�orded by Gauss-Legendre loses out to the fa
t that it requiresmore evaluations be
ause it is not nested. The Clenshaw-Curtis rules are stru
turallyinferior to the Patterson rules, and perform noti
eably worse. The trapezoidal rules,whi
h do not use di�erentiable stru
ture mu
h, unsurprisingly 
ome in last.There is however a surprise: Looking at the results for the Continuous 
lass, wesee that the polynomial interpolation rules perform quite a bit better than the trape-zoidal rule. This is unexpe
ted, be
ause in the Continuous 
ase, no derivative exists,so there is no theoreti
al reason to expe
t polynomial interpolation to perform bet-ter than trapezoidal quadrature. Indeed, looking at the results of the Dis
ontinuous
lass, this is exa
tly what we see. There is no smoothness to be taken advantage of,and all quadrature formulas perform equally.6.3.3 The 
hoi
e of the simpli
ial ratioSo far, we have established the �Estimate Min� algorithm with a simpli
ial rationof 0.5 and the Patterson rules to be the best 
hoi
e for our parti
ular Genz ben
h-mark. We now vary the simpli
ial ratio, to see in what way the adaptive algorithmperforms better than simpli
ial quadrature, and whether the 
ombination betweenthe two does indeed exhibit synergisti
 e�e
ts, as spe
ulated in se
tion 4.4. We testthe following simplex ratios:
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6.3 Finding good parameters for the algorithm
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6 The Genz Test SuiteSimpli
ial ratio Comment0.0 Fully adaptive0.1 Adaptive with small non-adaptive 
omponent0.5 Half-half hybrid1.0 Classi
al non-adaptive quadratureThe results are shown in 6.3.3 on the next page. We see that for the smooth Genzfun
tions, full adaptivity works best, and additional simpli
ial 
omponents simplyslow down the algorithm in �nding the best indi
es. The situation is quite di�erentfor the Dis
ontinuous 
lass. Here, the adaptive algorithm fails 
ompletely to identifythe best indi
es. However, neither does the fully non-adaptive algorithm performbest. Here we indeed have the 
ase that the two 
omponents inform ea
h other, andthe half-half hybrid 
omes out on top. It seems that the less smooth a problem is,the more irregular is the index stru
ture. In these 
ases, the adaptive method goesawry, and should be supported by a strong non-adaptive 
omponent.In 
on
lusion, we 
hoose the ratio of 0.5 for our algorithm. As seen in �gure 6.3.3 onthe fa
ing page, the 
onvergen
e is only slightly worse, but we gain a great deal ofrobustness.6.4 Comparisons with the standard methods6.4.1 d=8We are now ready to 
ompare the adaptive sparse grid method with the establishedmulti-dimensional quadrature methods des
ribed in 
hapter 2. Spe
i�
ally, we 
om-pare the following methods:Method Des
riptorAdaptive sparse grid, minimum estimator, 0.5 simpli
ial ratio,Patterson rule AdaptiveNon-adaptive sparse grid with Patterson rule Simpli
ialTensor-produ
t quadrature with Gauss-Legendre rule Produ
tQuasi-Monte Carlo quadrature with Halton sequen
e QMCMonte Carlo quadrature MCThe �Produ
t� quadrature was introdu
ed in 
hapter 2 to be of the form Q⊗d
M .This would allow only the numbers Md, M = 1, 2, . . . for the number of fun
tionevaluations. For d = 8, this 
orresponds to the integers 1, 256, 6561, 65536, . . . whi
hare spa
ed apart too far to �t in with our sequen
e 100, 200, 400, . . . of evaluations.We have mitigated the problem by mixing formulas of the type QM and QM−1 togive a produ
t quadrature formulas of the type Q⊗k

M ⊗Q⊗(d−k)
M−1 for k = 1, . . . , d, whi
hallows a better approximation of the given values.70
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6.4 Comparisons with the standard methodsThe results of the 
omparison are shown in 6.4.1 on the pre
eding page. We see thatthe �Adaptive� method does well for the smooth Genz fun
tions, although it loses outto �QMC� for the Corner Peak. It should be noted that, in 
ontrast to expe
tationsbased on logarithmi
 
onvergen
e rates (see 2.6) , the �Produ
t� quadrature does notdo too badly, although the �Adaptive� quadrature has overall better performan
e.For the Continuous and Dis
ontinuous 
lasses, we see that �QMC� is the method of
hoi
e. For these 
lasses, interpolation methods 
annot make use of any smoothness,and therefore show slow 
onvergen
e.6.4.2 d=4To see to what extent the relative advantages of the algorithms depend on the di-mension of the fun
tion, we have also performed ben
hmarks for the 
ases d = 4 and
d = 16 (next se
tion). The 
alibration of the di�
ulties for the Genz 
lasses wasperformed as in se
tion 6.3, yielding:

h1 = 8

h2 = 18

h3 = 3

h4 = 10

h5 = 17

h6 = 3The results are shown in �gure 6.4.2 on the following page. We see that fordimension 4, standard tensor produ
t quadrature performs well for the smooth Genz
lasses, overall being on par with the adaptive sparse grid approa
h. Simpli
ial sparsegrids perform only a little worse than the adaptive version. For the Continuous andDis
ontinuous 
lasses, again the sampling methods dominate. Note that due to thelimitations of �oating point arithmeti
, an a

ura
y of about 14 digits is the highestattained.6.4.3 d=16In this 
ase, the di�
ulties obtained from 
alibration were:
h1 = 8

h2 = 20

h3 = 1.5

h4 = 16

h5 = 26 73
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6.5 Dimension-adaptive vs. simpli
ial methods
h6 = 5In order to re�e
t the higher di�
ulty of quadrature in high dimensions, we in
reasedthe maximum number of fun
tion evaluations, so that now N = 100, 200, . . ., 100 ·

216 ≈ 6.6 · 106.The results are shown in �gure 6.4.3 on the next page. We see that �QMC�performs best for the Produ
t Peak and Gaussian 
lasses. For the non-smooth 
lasses,the sampling methods and �QMC� in parti
ular win hands down. We see that forhigh dimension, the �Adaptive� method loses a

ura
y in relation to the samplingmethods. For the Corner Peak and Os
illatory 
lasses, it is still overall the bestmethod. It performs very well for the Os
illatory 
lass, whi
h also judging by theprevious results seems espe
ially amenable to interpolation quadrature.6.5 Dimension-adaptive vs. simpli
ial methodsFrom the results of the ben
hmark in �gure 6.4.1 on page 72 we see that thedimension-adaptive sparse grid method always performs better than the simpli
ialnon-adaptive method in terms of a

ura
y. In this se
tion, we relate this observationto the stru
ture of the Genz fun
tions and examine the impli
ation for the indexset and index 
ontributions. For ea
h Genz 
lass, we show a salient index grid asprodu
ed by the visualization 
omponent of the algorithm (see se
tion 5.5).These grids are shown in �gure 6.5.1 on page 77. We have 
hosen dimension 2to 
reate the results. The stru
ture of the 2-dimensional se
tions through grids forthe higher dimensional representatives of ea
h Genz 
lass look similar, be
ause a2-dimensional se
tions in e�e
t represents the grid of a 2-dimensional fun
tion dueto the tensor produ
t nature of the sparse grid. In ea
h 
ase, we delineate the indi
essele
ted by the adaptive method by a red line, and those 
hosen by the simpli
ialmethod by a dashed line. Quadrature was performed for N = 300 evaluations withthe Patterson rule. To emphasize the di�eren
e between the methods, we havenot used the hybrid method here, and 
ompared the fully adaptive �Estimate Min�method to the simpli
ial sparse grid. We used the di�
ulties 8, 4, 4, 4, 4, 4.As we 
an see in the graphs, there are two fa
tors that 
ontribute to the better
onvergen
e of the adaptive method. The �rst is that the dimensions itself may be ofvarying importan
e. In the 
ase of the Genz fun
tions, the di�
ulty of the dimension
i in
reases with the size of the parameter ai (
ompare se
tion 6.2). Sin
e theseparameters are 
hosen randomly, some will be larger than others. For the Os
illatoryand Produ
t Peak fun
tions, for example, the dimension in verti
al dire
tion is moreimportant, whereas for the Corner Peak fun
tion, the horizontal dimension has higher
ontributions. The simpli
ial method is not able to take advantage of this fa
t, andtreats all dimensions equally. The se
ond fa
tor 
on
erns the shape of the indexset. For the Produ
t Peak 
lass, the optimal index set is more square (
onvex) thanthe simpli
ial triangle, whereas for the Continuous 
lass, it is more hollowed out(
on
ave). 75
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6.6 Error estimates
Os
illatory Produ
t Peak Corner Peak
Gaussian Continuous Dis
ontinuousFigure 6.5.1: Typi
al index 
ontributions for the Genz 
lasses, 
al
ulated for d = 2.The red line and dashed bla
k line delimit the 
ontributions sele
ted bythe adaptive and the simpli
ial method for N = 300 points, respe
tivelyFor the most 
ase, the di�eren
es between the adaptive and the simpli
ial indexset appear small. However, the 
ontributions of dire
tly neighboring indi
es oftendi�er by an order of magnitude, so missing only a few important indi
es 
an resultin a large di�eren
e in a

ura
y, as eviden
ed by the graphs in the last se
tion.The pi
ture for the Dis
ontinuous fun
tion demonstrates ni
ely why the fully adap-tive algorithm fails in this 
ase. In the beginning, it en
ounters only 
ontributionsof 0. When it �nally hits upon a non-zero 
ontribution, it expands along this path,and never goes ba
k to expand from the other indi
es with 0 
ontribution.6.6 Error estimatesWe 
on
lude this 
hapter by examining the quality of the error estimate. In se
tion4.3, we had given two di�erent estimation strategies, the 
ontribution-based estimateand the bla
k box estimate. We evaluated both methods for d = 8 and the �EstimateMin� hybrid algorithm with 0.5 simpli
ial ratio and the Patterson rule.The results for the bla
k box estimate are given in �gure 6.6.1 on the followingpage. This error estimate only be
omes available for N ≥ 103 (
ompare se
tion 5.5),so we start the abs
issa there. The left graph shows the error reliability, that is, theproportion of test fun
tions for whi
h the a
tual error was less or equal to the givenestimate, and the estimate was therefore valid. A value of 1 is optimal and meansthat for all 100 test fun
tions of this 
lass, the given estimate was valid. The rightgraph shows the error e�
ien
y, that is, the ratio of the a
tual error to the error77
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Figure 6.6.1: Bla
k-box error estimate for the �Estimate Min� algorithmestimate. For this ratio, we 
onsider only those estimates that are valid. The reasonfor this is that otherwise, invalid estimates would spuriously lead to a seeminglybetter e�
ien
y.A value of r for the error e�
ien
y means that the error was overestimated by thefa
tor 1
r . Note that while higher values for the error e�
ien
y are better, we 
annothope for an optimum of 1, as this would mean that we would know the exa
t distan
eto the 
orre
t result. In fa
t, if we assume that the error is distributed randomlya

ording to a Gaussian distribution with mean 0, and we require an error reliabilityof at least 99%, the optimal e�
ien
y we 
an hope for is about 0.3. Indeed, taking

a so that
N(0, 1)([−a, a]) = 0.99for the normal distribution N(0,1), we have

1

0.99

∫ a

−a

|x|
a
dN(0, 1)(x) = 0.3015 . . .as the average e�
ien
y for the valid error estimates.We see that with in
reasing N , the bla
k box estimator be
omes more reliable,but also less e�
ient. Whereas there is always a trade o� between reliability ande�
ien
y, we would like this trade o� to be independent of N , whi
h the algorithmdoes not satisfy well.This e�e
t is even more pronoun
ed for the 
ontribution-based estimate, as seenin �gure 6.6.2 on the next page. Here, the error estimate is very reliable, but thee�
ien
y is extremely low. In the 
ase of the �Estimate Geom� and �Estimate Max�algorithms, this e�e
t is even stronger, be
ause the higher individual estimates forthe index 
ontributions lead to a higher total error estimate (results not shown).In both 
ases, the error estimator does not work well for the Dis
ontinuous 
lass,whi
h is not surprising 
onsidering that both error estimators were based on assump-tions of a regular 
ontribution stru
ture and 
onvergen
e.Although none of the error estimators is fully satisfa
tory, the bla
k box estima-tor seems the better 
hoi
e overall be
ause of the extremely low e�
ien
y of the78



6.7 Con
lusion
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Figure 6.6.2: Contribution-based error estimate for the �Estimate Min� algorithm
ontribution-based estimator.6.7 Con
lusionBased on the Genz test suite for d = 8, we identify the following 
ombination ofparameters as the overall best 
hoi
e:
• The hybrid algorithm 4.4.1 with the minimum estimator and a simpli
ial ratioof 0.5
• The Patterson quadrature rule
• The bla
k box error estimatorFor the Genz test suite, this algorithm performs very well for the smooth fun
tions.In many 
ases, espe
ially for the Os
illatory 
lass, it gives results that are orders ofmagnitude better than those available with the sampling methods. These bene�tsare espe
ially prominent for low and medium dimensions, and begin to diminish withhigher dimensions. On the other hand, be
ause Monte Carlo and Quasi-Monte Carlohave maximum 
onvergen
e rates of 1

2 and 1 respe
tively, they will usually not su�
eif we need high a

ura
y for a given problem. In this 
ase, it seems advisable to atleast try out the adaptive algorithm.The adaptive hybrid algorithm always performs better than the non-adaptive sim-pli
ial quadrature, and should therefore repla
e it for all appli
ations where theadditional memory demands of the index management allow it.
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7 Path integrals for quantumme
hani
s7.1 Introdu
tionThe 
entral tenet of quantum me
hani
s is the S
hroedinger equation[27℄, a partialdi�erential equation with values in C whose solutions represent possible wave fun
-tions. In this 
hapter, we examine the simple 
ase of a single parti
le with mass min one spatial dimension for a given time-independent potential V (x). In this 
ase,the S
hroedinger equation for the wave fun
tion φ(t, x) of the parti
le is given by
i~
∂

∂t
φ(x, t) = − ~

2

2m

∂2

∂x2
φ(x, t) + V (x)φ(x, t)For numeri
al 
omputation, the time t is substituted by the negative imaginary time

τ , i.e. t = −iτ . Also, we 
hoose units so that ~ = 1, and set m = 1. In this way, weobtain the di�usion-type equation
− ∂

∂τ
ψ(x, τ) = −1

2

∂2

∂x2
ψ(x, τ) + V (x)ψ(x, τ) (7.1.1)The original solution φ is obtained by analyti
al 
ontinuation of ψ into the 
omplexplane (
orresponding to the original real time values).Sin
e this thesis deals with integration and not partial di�erential equations, we usethe Feynman-Ka
 formula [12, 22℄. Given a spe
i�ed initial 
ondition (i.e. ψ(x, 0) =

u(x)), the formula gives a solution of equation 7.1.1 by
ψ(x, τ) =

∫

u(Wτ ) · exp

(

−
∫ τ

0
V (Ws)ds

)

dPx(W )where W on the probability measure Px is the Brownian motion starting in x at time0 [19℄. Of parti
ular interest are the 
orresponding Green fun
tions. Mathemati
ally,they 
an be represented by taking Brownian paths with �xed start and end points.We use the notation Px,τ,y to denote the measure for Brownian paths that start at
x at time 0 and end in y at time τ . We then have

K(x, y, τ) :=

∫

exp

(

−
∫ τ

0
V (Ws)ds

)

dPx,τ,y(W ) (7.1.2)In this notation, y → K(x, y, t) is the Green fun
tion for a given time t and startingpoint x. In physi
s, K is sometimes 
alled the transfer matrix or transition matrix.81



7 Path integrals for quantum me
hani
sThe Brownian paths W in the equations above are in�nite-dimensional obje
ts.To 
ompute the elements K(x, y, τ) numeri
ally, we use a dis
retized approximationof equation 7.1.2. Let M be the number of time steps, and τk = k
M · τ the dis
retetimes. For W we de�ne

πM (W ) = (Wτ0 , . . . ,WτM
)to be the proje
tion of the pro
ess W to its values at the times τ0, . . . , τM . Approx-imating the integral ∫ τ

0
V (Ws)dsby the trapezoidal sum

M∑

i=0

wM,iV (Wτi
)with

wM,i =

{
1
2

τ
M
τ
M

for i = 0,Motherwiseand using the transformation formula, we obtain
K(x, y, τ) ≈

∫

u(ξM ) · exp

(

−
M∑

k=0

wM,kV (ξk)

)

d(πM )∗Px,τ,y(ξ) (7.1.3)Remark 7.1.1 It is of 
ourse also possible to use a di�erent quadrature formula, forexample the Gauss-Legendre rule, to approximate the integral ∫ τ
0 V (Ws)ds. However,be
ause the underlying Brownian motion is not di�erentiable, the same is generallytrue for the integrand V (Ws), so we do not expe
t there to be any additional smooth-ness to be exploited. We obtained preliminary results using interpolatory formulas,whi
h indeed did not show to any improvements in 
onvergen
e.7.2 The dis
retized measureThe measure

ν := (πM )∗Px,τ,yis a M -dimensional Gaussian measure given byEν(ξk) = EPx,τ,y(Wτl
) = x+

k

M
(y − x)Covν(ξk, ξm) = CovPx,τ,y(Wτk

,Wτm) =
τ

M

(

min(k,m) − km

M

)Gaussian measures of this kind 
an easily be 
onstru
ted using the Brownian bridgemethod [6℄. The idea of the Brownian Bridge is to begin with �xed start and endpoints, and then su

essively inter
alate the remaining points. For any two points
ξr and ξt at times r < t, and for a time s with r < s < t, the inter
alated point ξs is82



7.3 The harmoni
 os
illator
onstru
ted by
ξs =

(t− s)ξr + (s− r) ξt
t− r

+

√

(t− s)(s− r)

t− r
· Zsfor a random variable Zs obeying the normal distribution. In this way, for any Mwe have a linear mapping

BM : R
M−1 → R

M+1that des
ribes a 
onstru
tion of the measure ν from independent Gaussian randomvariables. We need M − 1 of these variables be
ause the start ξ0 = x and the end
ξM = y of the Brownian bridge are �xed, leaving ξ1, . . . , ξM−1 to be determined.Altogether, we have

(BM )∗N(0, 1)⊗(M−1) = νwhere N(0, 1) is the Gaussian normal distribution. The fun
tion BM 
an be imple-mented on a 
omputer so that the time used is of the orderM . The Brownian bridge
onstru
tion thus o�ers a qui
k method to implement the desired measure ν. It iseasiest to implement ifM is a power of 2, i.e. M = 2k for k ∈ N, be
ause in this waywe 
an simply 
hoose s = r+t
2 for the inter
alation times. We will limit ourselves tothis 
ase. Using the results above for equation 7.1.3 gives us the formula

K(x, y, τ) ≈
∫

u(ξM ) · exp

(

− τ

M

M∑

k=1

V (ξk)

)

d(BM )∗N(0, 1)⊗(M−1)(ξ)We have now redu
ed the problem of 
al
ulating K(x, y, τ) to an integral over themeasure N(0, 1)⊗(M−1). In the notation of se
tion 2.4, we have µ = N(0, 1) and
d = M −1. This immediately suggests using the Gauss-Hermite rule for quadrature.Alternatively, we 
an use the 
umulative distribution fun
tion

FN(0,1)(x) := N(0, 1)(] −∞, x])to generate the measure N(0, 1) from λ1([0, 1]), using the fa
t that
(FN(0,1))

∗λ1([0, 1]) = N(0, 1)In summary, we 
an 
al
ulate the integral 7.1.3 as a (M − 1)-dimensional integral,using either the measure N(0, 1) or the measure λ1([0, 1]) by applying the appropriatetransformation.7.3 The harmoni
 os
illatorThe harmoni
 os
illator is a 
lassi
al problem in quantum me
hani
s, and we have
hosen it as an example to explore adaptive sparse grid integration for path integrals.83



7 Path integrals for quantum me
hani
sThe harmoni
 os
illator is given by the potential
V (x) =

ω2

2
x2where ω is the os
illation frequen
y.Of parti
ular interest is the fa
t that analyti
al solutions are known for the S
hroe-dinger equation itself as well as for the dis
retized problem, allowing 
omparisonsagainst the true value and the exa
t time-dis
rete value. The analyti
al result forthe Green fun
tion is

K(x, y, τ) =

√
ω

2π sinh(ωτ)
· exp

(

− ω

2 sinh(ωτ)

(
(x2 + y2) cosh(ωτ) − 2xy

)
)We obtained the result of the dis
retized integral 7.1.3 by writing the measure ν asa weight on λM−1(RM−1). This leads to the Gauss-type integral

(
mM

2πτ

)M
2

∫ ∞

−∞
. . .

∫ ∞

−∞
exp(−ω

2

2

M∑

k=0

wM,kξ
2
k)·exp(

m

2

M

τ

M∑

k=1

(ξk−ξk−1)
2)dξ1 . . . ξM−1(7.3.1)with ξ0 = x and ξM = y. By indu
tion over M , we obtain a re
ursion formulathat 
an be used to qui
kly 
al
ulate the 
orre
t value (see the 
ode for details [25℄).Alternatively, we 
an write the integral 7.3.1 in the form

∫

. . .

∫

eξ
T Aξdξ1 . . . ξM−1with a symmetri
al matrix A ∈M(n+ 1, n+ 1), and solve the integral by diagonal-ization of the matrix.We have evaluated the terms K(x, y, τ) for the times τ = 0.1, τ = 1 and τ = 10.We used M = 128 time steps, be
ause a plot of the 
orre
t dis
rete vs. 
ontinuousresults suggested that for this number of time steps, we have a good trade o� betweenthe size of the dis
retization error and number of dimensions. Of 
ourse, for realproblems we do not have analyti
al results to work with, and a suitable number oftime steps must be determined from experien
e and by trial and error.For ea
h 
hoi
e of τ , the average number of 
orre
t digits for 25 runs was 
omputed.For ea
h run, the parameters x and y were 
hosen with uniform probability from theinterval [−1, 1]. The results of quadrature were 
ompared to the value of the dis
reteintegral 7.1.3 and to the 
orre
t value of the sto
hasti
 integral 7.1.2. The resultsare shown in �gure 7.3.1 on the fa
ing page.We see that the dis
rete interval is solved best by the adaptive algorithm for

τ = 0.1 and τ = 1, but better by the sampling methods for τ = 10. For τ = 0.1 and
τ = 1, the Gauss-Hermite rule performs noti
eably better than the Patterson rule.We 
onje
ture that the transformation from distribution λ1([0, 1]) to N(0, 1) via thefun
tion FN(0,1) makes the fun
tion less smooth and therefore slows down 
onver-gen
e. The Gauss-Hermite rules are naturally adapted to the Gaussian distribution,84
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Figure 7.3.1: Quadrature results for the Green fun
tion K(x,y,t) vs. the 
orre
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ontinuous (right) results for the harmoni
 os
illator85
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Figure 7.3.2: Error reliability and e�
ien
y for the Adaptive Hermite algorithm forthe harmoni
 os
illator vs. the 
orre
t dis
rete valueand better suited to the problem. The good performan
e of the Patterson rules for
τ = 1 between N = 103 and N = 104 is due to a pass through zero at this point,that o

urs independently of the start and end points x and y (results not shown).We did not investigate this further.In the right graphs, whi
h plot the error against the 
ontinuous result, we see thatfor τ = 0.1, some of the additional a

ura
y of the adaptive algorithms is spurious,and represents re�nement past the error of dis
retization. Even with this taken intoa

ount, the adaptive methods give far better results than the sampling methods.The error of dis
retization does not 
ome into play for the times τ = 1 and τ = 10.The reliability and e�
ien
y of the error estimator for quadrature against the
orre
t time-dis
rete value are shown in 7.3.2. We see that the estimator fails 
om-pletely in this 
ase. In many instan
es, the reliability was 0, so the e�
ien
y ratingis not available. As we 
an see from the left graph for τ = 0.1 in �gure 7.3.1 on thepre
eding page, 
onvergen
e seems very errati
 for this path integral problem. Thisprobably throws the bla
k box estimator o� 
ourse, sin
e it depends on a steady
onvergen
e rate. We show the estimator only for the runs performed against thedis
rete value, as the algorithm has no me
hanism for judging the result against the
ontinuous value.7.4 The anharmoni
 os
illatorAs a se
ond example, we 
onsider the anharmoni
 os
illator, given by

V (x) =
1

2
ω2x2 + λ(x2 − f2)2We 
hose ω = 0, λ = 1 and f = 1
2 to obtain a two well potential with wells at

−1
2 and 1

2 (see �gure 7.4.1 on the next page). Be
ause of this, it is 
onsidered tobe more di�
ult to solve 
omputationally than the harmoni
 os
illator. Again we
al
ulate the Green fun
tion K(x, y, τ) for x and y 
hosen uniformly from [−1, 1]86
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7 Path integrals for quantum me
hani
sfor the times τ = 0.1, τ = 1 and τ = 10. Sin
e no analyti
al solutions for theanharmoni
 os
illator are known, we do not have any analyti
al referen
e values.Instead, we determined preliminarily whi
h algorithm works best for ea
h time τ ,and approximated the true result by performing quadrature with 20 times as manyevaluations as the maximum used in the ben
hmark.The results for the anharmoni
 os
illator are qualitatively similar to those forharmoni
 os
illator. However, while the sampling methods attain about the samea

ura
y as for the harmoni
 os
illator, the adaptive methods perform by more thanan order of magnitude.The results for error estimation are similar to those for the harmoni
 os
illator,and are not shown.7.5 Con
lusionThe adaptive sparse grid algorithm works well for 
al
ulating the green fun
tion
K(x, y, τ) for the time τ = 0.1, is a little better (harmoni
 os
illator) or a littleworse (anharmoni
 os
illator) for τ = 1 and fails for τ = 10 as 
ompared to thesampling methods. The Gauss-Hermite rule performs better than the Pattersonrule, be
ause it is better suited to the Gaussian noise underlying the generation ofthe path. The error estimator goes fully astray, and 
annot be used for these pathintegrals.Compared to the simpli
ial sparse grid, the adaptive method bene�ts from thefa
t that the Brownian bridge method introdu
es a hierar
hy between the di�erentdimensions. Due to the method of 
onstru
tion by inter
alation, the Gaussian ran-dom variables used �rst in�uen
e the shape of the path to a greater degree. Theadaptive method 
an then re�ne spe
i�
ally for these dimensions, whi
h leads to anoverall better a

ura
y (
ompare [16, 6℄).While the results are en
ouraging for short times, many problems in quantum me-
hani
s require the 
omputation for long time intervals. Also, instead of a pure MonteCarlo method, modi�ed versions with importan
e sampling, like the Metropolis al-gorithm [26℄ are employed, that improve performan
e 
onsiderably. Lo
ally adaptivere�nement might yield similar gains for the adaptive sparse grid methods, but wasnot 
onsidered in this thesis. Further investigation is needed to determine if and howadaptive sparse grid quadrature 
an provide e�
ient solutions for quantum me
han-i
al questions and other problems from physi
s.
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8 Con
lusionDimension-adaptive sparse grid quadrature o�ers an interesting approa
h to 
omput-ing integrals of moderate and high dimensions. In 
ontrast to the sampling methods,whi
h are the main quadrature methods used for high dimensional integrals today,the sparse grid method is interpolatory and 
an therefore exploit high degrees ofsmoothness of the integrands. Dimension-adaptive sparse grids improve the methodof sparse grids by taking into a

ount the di�erent importan
e of dimensions. Thisdi�eren
e may be a 
oin
idental property of the fun
tion, as for the Genz test fun
-tions. It may also arise from purposeful design, as for the Brownian Bridge [6℄. Forthe latter 
ase, adaptive sparse grids 
onstitute a good method for exploiting thishierar
hy, from whi
h simpli
ial sparse grids 
annot pro�t. This leads to an overallbetter 
onvergen
e [16℄.In this thesis, we have introdu
ed a new bla
k box method of error estimationand established theoreti
al results for 
ontribution-based error estimation. Neitherof these methods works very well, however.We have also examined several di�erent methods of index re�nement. All arebased on some sort of estimate of the size of additional index 
ontributions. Thesemethods work well in �nding an index set suited to the fun
tion. We have seen thatthe di�erent methods of estimation lead to very similar 
onvergen
e, showing thatindex sele
tion by estimation is a robust pro
ess that does not depend greatly on thedetails of the estimation strategy itself.We have 
ompared the performan
e of di�erent quadrature rules for the sparsegrid method. The Patterson rule represents a good 
hoi
e for many integrands.However, for fun
tions based on Gaussian noise, the Gauss-Hermite formulas seemto be parti
ularly well suited and perform better than the Patterson rule.We have implemented the di�erent strategies proposed in this thesis on the 
om-puter in the obje
t-oriented language Java. The implementation delivers on the goalof a modular design, and allows for the e�ortless mixing and mat
hing of di�erentstrategies. As su
h, it presents a good base for further exploration of adaptive sparsegrid methods for quadrature.Although theoreti
al results show that asymptoti
ally, the sparse grid methodbreaks the 
urse of dimensionality, the pre-asymptoti
 pra
ti
e is more ambivalent,as eviden
ed by the Genz ben
hmarks and the quantum me
hani
al path integrals.Some types of integrands, notably the Genz Os
illatory fun
tion and the path inte-grals for short times, yield a high 
onvergen
e, and the adaptive sparse grid algorithmthen performs several orders of magnitude better than both simpli
ial sparse gridsand the sampling methods. For other integrands, and notably those with a low89



8 Con
lusiondegree of smoothness, adaptive sparse grid quadrature does not perform well. Asexpe
ted from theory, Monte Carlo performs truly independently of dimension inpra
ti
e, whereas 
onvergen
e for the sparse grid methods is noti
eably slowed forhigher dimensions in the settings of the Genz ben
hmark.The new hybrid method introdu
ed in this thesis appears to be a suitable 
om-bination of adaptive and simpli
ial sparse grids. It has the same 
onvergen
e ratein theory and the same robust behavior in pra
ti
e as the non-adaptive sparse gridmethod, but also in
orporates the improvements of the adaptive method. Indeed,for di�
ult fun
tions, the hybrid method even shows synergisti
 e�e
ts between thetwo approa
hes. With regard to these results, and to the fa
t that index sele
tion byestimation is a robust, the hybrid approa
h o�ers a good standard with no immediateneed for improvement.Further resear
h is required on 
lassifying the types of problems for whi
h adap-tive sparse grids work well, and on how to employ the adaptive method to obtainhighly a

urate results. In parti
ular, for the path integral problem from quantumme
hani
s, we see that adaptive sparse grids may be a good 
hoi
e for short times.Unfortunately, many problems in physi
s require the integration over large times,for whi
h the adaptive method is inferior to the established Monte Carlo and Quasi-Monte Carlo approa
hes. Further exploration will be needed to determine whetherthere is a ni
he in physi
s where adaptive sparse grids present an improvement overtraditional sampling methods.Path integrals o

ur naturally in �nan
ial mathemati
s in the form of sto
k pri
esand for other values. Sin
e the Brownian Bridge 
onstru
tion allows for a hierar
hybetween the dimensions from whi
h the dimension-adaptive algorithm 
an bene�t,it will be worthwhile to examine the utility of the adaptive method for this domain.First results [16℄ look en
ouraging.No satisfa
tory solution has been found for the estimation of the quadrature error.This is unfortunate and requires further e�ort, be
ause a quadrature value by itselfwithout a quali�ed estimate of its a

ura
y holds only little value.
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